Skip to main content
Log in

Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweeds have great potential as raw material for protein-based functional ingredients due to their high protein content; however, their complex polysaccharide matrix could hinder protein extraction. In this work, protein extracts from the brown seaweed Macrocystis pyrifera and the red seaweed Chondracanthus chamissoi were obtained by optimization of an enzyme-assisted extraction using cellulase to enhance the protein extraction yields. The comparison of protein content obtained by enzymatic and non-enzymatic methods suggests that the disruption of the cellulase-sensitive carbohydrate matrix increases protein content on the extract. The protein extraction yields were 74.6% for M. pyrifera (18 h, 1/10 enzyme/seaweed ratio) and 36.1% for C. chamissoi (12 h, 1/10 enzyme/seaweed ratio). Both protein extracts showed antioxidant activity and M. pyrifera protein extract showed a potential antihypertensive activity. These results establish a firm basis for further studies on seaweed protein extracts as potential functional ingredients, or towards the production of bioactive peptides through a straightforward, and environmentally sustainable methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) Bioactive peptides derived from seaweed protein and their benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci 83:6–16

    Article  CAS  PubMed  Google Scholar 

  • AOAC (1990) Official Methods of Analysis. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Astorga-España MS, Mansilla A (2014) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 26:973–978

    Article  CAS  Google Scholar 

  • Barbarino E, Lourenςo SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767:1073–1101

    Article  CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2017) Review: algal proteins: extraction, application, and challenges concerning production. Foods 6:1–34

    Article  CAS  Google Scholar 

  • Charoensiddhi S, Conlon MA, Franco CMM, Zhang W (2017) The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol 70:20–33

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fleurence J (1999) The enzymatic degradation of algal cell walls: a useful approach for improving protein accessibility? J Appl Phycol 11:313–314

    Article  CAS  Google Scholar 

  • Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Limited, Cambridge, pp 197–213

    Chapter  Google Scholar 

  • Fleurence J, Le Coeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582

    Article  CAS  Google Scholar 

  • Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520

    Article  CAS  Google Scholar 

  • Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT-Food Sci Technol 44:1266–1272

    Article  CAS  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT-Food Sci Technol 51:375–382

    Article  CAS  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rúperez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  CAS  Google Scholar 

  • Le Guillard C, Bergé J, Donnay-Moreno C, Bruzac S, Ragon J, Fleurence J, Dumay J (2016) Soft liquefaction of the red seaweed Grateloupia turuturu Yamada by ultrasounds-assisted enzymatic hydrolysis process. J Appl Phycol 28:2575–2585

    Article  CAS  Google Scholar 

  • Leyton A, Pezoa-Conte R, Barriga A, Buschmann AH, Maki-Arvela P, Mikkola J-P, Lienqueo ME (2016) Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Res 16:201–208

    Article  Google Scholar 

  • Li G, Liu H, Shi Y, Le G (2005) Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharmaceut Biomed 37:219–224

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Olivares-Molina A, Fernández K (2016) Comparison of different extraction techniques for obtaining extracts from brown seaweeds and their potential effects as angiotensin I-converting enzyme (ACE) inhibitors. J Appl Phycol 28:1295–1302

    Article  CAS  Google Scholar 

  • Ortiz J (2011a) Composición Nutricional y funcional de Algas Pardas chilenas: Macrocystis pyrifera y Durvillaea antarctica. Monografía. Laboratorio de Química y Análisis de Alimentos, Departamento de Ciencia de los Alimentos y Tecnología Química. Universidad de Chile, Chile

  • Ortiz J (2011b) Composición Nutricional y Funcional de Algas Rodofíceas Chilenas. Monografía. Laboratorio de Química y Análisis de Alimentos, Departamento de Ciencia de los Alimentos y Tecnología Química. Universidad de Chile, Chile

  • Paiva L, Lima E, Neto AI, Baptista J (2017) Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Ulva rigida C. Agardh protein hydrolysate. J Funct Foods 26:65–76

    Article  CAS  Google Scholar 

  • Peinado I, Girón J, Koutsidis G, Ames JM (2014) Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res Int 66:36–40

    Article  CAS  Google Scholar 

  • Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909

    Article  CAS  Google Scholar 

  • Sánchez-Camargo A, Montero L, Stiger-Pouvreau V, Tanniou A, Cifuentes A, Herrero M, Ibañez E (2016) Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem 192:67–74

    Article  CAS  Google Scholar 

  • Sari YW, Mulder WJ, Sanders JPM, Bruins ME (2015) Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 10:1138–1157

    Article  CAS  PubMed  Google Scholar 

  • Sernapesca (2016) Desembarque Total Región. Anuario Estadístico Nacional de Pesca. Desembarque Servicio Nacional de Pesca y Acuicultura, Chile

  • Sharma S, Horn SJ (2016) Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol 213:155–161

    Article  CAS  PubMed  Google Scholar 

  • Siriwardhana N, Kim K, Lee K, Kim S, Ha J, Song C, Lee J, Leon Y (2008) Optimization of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. Int J Food Sci Technol 43:587–596

    Article  CAS  Google Scholar 

  • Stiger-Pouvreau V, Bourgougnon N, Deslandes E (2016) Carbohydrates from seaweeds. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Academic Press, New York, pp 223–274

  • Tardioli PW, Pedroche J, Giordano RLC, Fernández-Lafuente R, Guisán JM (2003) Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxil agarose. Biotechnol Prog 19:352–360

    Article  CAS  PubMed  Google Scholar 

  • Uribe E, Marin D, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez A (2016) Assessment of vacuum-dried peppermint (Menta piperita L.) as a source of natural antioxidants. Food Chem 190:559–565

    Article  CAS  PubMed  Google Scholar 

  • Vásquez JA, Alonso Vega JM (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277

    Article  Google Scholar 

  • Vega-Gálvez A, Ayala-Aponte A, Notte E, de la Fuente L, Lemus-Mondaca R (2008) Mathematical modeling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera. Dry Technol 26:1610–1616

    Article  Google Scholar 

  • Wang T, Jónsdóttir R, Kristinsson HG, Hreggvidsson GO, Jónsson JO, Thorkelsson G, Ólafsdóttir G (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci Technol 43:1387–1393

    Article  CAS  Google Scholar 

  • Wijesinghe WAJP, Jeon Y (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ (2012) Degradation of κ-carrageenan by hydrolysis with commercial α-amylase. Carbohydr Polym 89:394–396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of CONICYT-PCHA Doctorate Grant 2016-21160126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bernal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez, V., Martínez, R. & Bernal, C. Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. J Appl Phycol 31, 1999–2010 (2019). https://doi.org/10.1007/s10811-018-1712-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1712-y

Keywords

Navigation