Skip to main content

Advertisement

Log in

Identification of extracellular proteins from Aurantiochytrium sp. 18W-13a

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Thraustochytrids, osmoheterotrophic protists which are decomposers in the marine ecosystem, are emerging as promising sources of valuable lipids such as docosahexaenoic acid and squalene. To decompose organic macromolecules in their environment, they are thought to secrete degradation enzymes. However, at present, the secretome analysis of thraustochytrids is still insufficiently studied. In this study, we attempted to identify extracellular proteins secreted by Aurantiochytrium sp. 18W-13a, a thraustochytrid strain that has high squalene content. Supernatants of cultures grown under standard growth media were concentrated and the obtained proteins were fractionated and identified using mass spectrometry. Two proteins, SP1 and SP2, were identified and found to be constitutively expressed. SP2 contains von Willebrand factor A and PAN/APPLE domains, which are involved in protein adhesion. Extracellular proteins from this strain may have roles related to protein or ligand interactions and may be necessary for the cell’s survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clérico EM, Maki JL, Gierasch LM (2008) Use of synthetic signal sequences to explore the protein export machinery. Biopolym - Pept Sci Sect 90:307–319

    Article  Google Scholar 

  • Fitzpatrick J, Kricka W, James TC, Bond U (2014) Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J Appl Microbiol 117:96–108

    Article  CAS  PubMed  Google Scholar 

  • Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13:597–608

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Abraham RE, Barrow CJ, Puri M (2015) Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. Bioresour Technol 184:373–378

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Singh D, Byreddy AR, Thyagarajan T, Sonkar SP, Mathur AS, Tuli DK, Barrow CJ, Puri M (2016) Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity. Biotechnol J 11:345–355

    Article  CAS  PubMed  Google Scholar 

  • Hong WK, Kim CH, Rairakhwada D, Kim S, Hur BK, Kondo A, Seo JW (2012) Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid. Bioprocess Biosyst Eng 35:129–133

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kanchana R, Muraleedharan UD, Raghukumar S (2011) Alkaline lipase activity from the marine protists, thraustochytrids. World J Microbiol Biotechnol 27:2125–2131

    Article  CAS  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Singh P, Sun Y, Luan S, Wang G (2014) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98:3241–3255

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X (2015) Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep 5:14446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  CAS  PubMed  Google Scholar 

  • Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Van Thang D, Ueda M, Honda D, Mahakhant A, Kaya K, Watanabe MM (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    Article  CAS  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour Technol 109:287–291

    Article  CAS  PubMed  Google Scholar 

  • Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:26–31

    Article  Google Scholar 

  • Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Tanguy A, Perrigault M, Espinosa EP, Allam B (2014) Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 15:245

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73:180–182

    Article  CAS  PubMed  Google Scholar 

  • Thompson CE, Beys-da-Silva WO, Santi L, Berger M, Vainstein MH, Guima Rães JA, Vasconcelos ATR (2013) A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express 3:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarimizu T, Nakamura M, Hoshida H, Akada R (2015) Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Factories 14:20

    Article  Google Scholar 

  • Yoneda K, Yoshida M, Suzuki I, Watanabe MM (2016) Identification of major lipid droplet protein in a marine diatom Phaeodactylum tricornutum. Plant Cell Physiol 57:397–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Makoto M. Watanabe of the Algal Biomass and Energy System Research and Development Center, University of Tsukuba for providing the Aurantiochytrium sp. 18W-13a. We also thank Dr. Masaki Yoshida from the University of Tsukuba and Dr. Ryo Koyanagi from Okinawa Institute of Science and Technology for the local protein database used in this study. The service for the Edman protein sequencing was provided by Yumiko Makino in the Functional Genomics Facility, National Institute for Basic Biology and Dr. Shoji Mano in National Institute for Basic Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwane Suzuki.

Electronic supplementary material

ESM 1

(DOCX 148 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juntila, D.J., Yoneda, K. & Suzuki, I. Identification of extracellular proteins from Aurantiochytrium sp. 18W-13a. J Appl Phycol 30, 63–69 (2018). https://doi.org/10.1007/s10811-017-1171-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1171-x

Keywords

Navigation