Skip to main content

Advertisement

Log in

Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this paper we study the outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors (3.0 m3). Experiments were performed modifying the dilution rate and evaluating biomass productivity and quality, in addition to the overall performance of the system. Results confirm that T. lutea can be produced outdoors on a commercial scale in continuous mode, obtaining productivities of up to 20 g m−2 day−1 of biomass, which are rich in proteins (45 % d.wt.) and lipids (25 % d.wt.). The utilization of this type of photobioreactor allows one to control the levels of contamination and pH within the cultures, but daily variations in solar radiation impose elevated dissolved oxygen concentrations and insufficient temperature conditions on the cells inside the reactor. Excessive dissolved oxygen reduces biomass productivity to 68 % of that which is maximal, whereas inadequate temperature reduces it to 63 % of maximum. Thus, by optimally controlling these parameters, biomass productivity can be almost doubled. These results confirm the potential for producing this valuable strain on a commercial scale in optimally designed/operated tubular photobioreactors as a viable biotechnological industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Acién FG, Fernández JM, Molina-Grima E (2013) Economics of microalgae biomass production. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 313–325

    Google Scholar 

  • Badger MR, Von Caemmerer S, Ruuska S, Nakano H, Laisk A, Allen JF, Asada K, Matthijs HCP, Griffiths H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc B 355:1433–1446

    Article  CAS  Google Scholar 

  • BEAM-network (2013) Biotechnological and environmental applications of microalgae. Murdoch University, Australia. Microalgae in Aquaculture & Animal Nutrition: http://www.bsb.murdoch.edu.au/groups/beam/BEAM-Appl3.html

  • Bendif EM, Probert I, Schroeder DC, de Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776

    Article  CAS  Google Scholar 

  • Boeing P (2000) Larval feed alternatives. Global Aquac Advocate 3:48–50

    Google Scholar 

  • Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture 72:247–253

    Article  Google Scholar 

  • Caers M, Coutteau P, Sorgeloos P, Gajardo G (2003) Impact of algal diets and emulsions on the fatty acid composition and content of selected tissues of adult broodstock of the Chilean scallop Argopecten pupuratus (Lamarck, 1819). Aquaculture 217:437–452

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  • Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11:467–476

    Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  • FAO (2014) The State of World. Fisheries and Aquaculture. Opportunities and challenges. www.fao.org

  • Fernández I, Acién FG, Fernández JM, Guzmán JL, Magán JJ, Berenguel M (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181

    Article  PubMed  Google Scholar 

  • Fernández I, Acién FG, Berenguel M, Guzmán JL (2014) First principles model of a tubular photobioreactor for microalgal production. Ind Eng Chem Res 53:11121–11136

    Article  Google Scholar 

  • Goldman JC, Riley CB, Dennett MR (1982) The effect of pH in intensive microalgal cultures. II. Species competition. J Exp Mar Biol Ecol 57:15–24

    Article  Google Scholar 

  • González López CV, Cerón García MC, Acién Fernández FA, Segovia Bustos C, Chisti Y, Fernández Sevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591.

  • Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 6:391–396

    Article  Google Scholar 

  • Ippoliti D, Gómez C, del Mar Morales-Amaral M, Pistocchi R, Fernández-Sevilla JM, Acién FG (2016) Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresour Technol 203:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by phenol–sulfuric acid method. In: Hellebust JA, Craigie JS (Eds) Handbook of Physiological and Biochemical Methods. Cambridge Univ. Press, Cambridge, pp 96–97

  • Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798

    Article  CAS  PubMed  Google Scholar 

  • Marchetti J, Bougaran G, Le Dean L, Mégrier C, Lukomska E, Kaas R, Olivo E, Baron R, Robert R, Cadoret JP (2012) Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 326–329:106–115

    Article  Google Scholar 

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Heaven S, Banks CJ (2013) Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol 137:188–195

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, García Sánchez JL, Acién Fernández FG, López Alonso D (1994) Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 37:159–166

    Article  CAS  Google Scholar 

  • Molina-Grima E, García-Camacho F, Sánchez-Pérez JA, Acién FG, Fernández-Sevilla JM (1997) Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzym Microb Technol 21:375–381

    Article  Google Scholar 

  • Morales-Amaral MM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E (2015) Production of microalgae using centrate from anaerobic digestion as the nutrients source. Algal Res 9:297–305

    Article  Google Scholar 

  • Muller-Feuga A (2013) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley Blackwell, Chichester, pp 613–627

    Chapter  Google Scholar 

  • Norsker N, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Thinh L, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Saoudi-Helis L, Dubacq J, Marty Y, Samain J, Gudin C (1994) Influence of growth rate on pigment and lipid composition of the microalga Isochrysis aff. galbana clone T.iso. J Appl Phycol 6:315–322

    Article  CAS  Google Scholar 

  • Sepulveda C, Acién FG, Gómez-Serrano C, Jiménez-Ruiz N, Riquelme C, Molina-Grima E (2015) Utilization of centrate for the production of the marine microalga Nannochloropsis gaditana. Algal Res 9:107–116

    Article  Google Scholar 

  • Slegers PM, van Beveren PJM, Wijffels RH, Van Straten G, Van Boxtel AJB (2013) Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy 105:395–406

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Tzovenis I, De Pauw N, Sorgeloos P (2003) Optimisation of T-ISO biomass production rich in essential fatty acids: I. Effect of different light regimes on growth and biomass production. Aquaculture 216:203–222

    Article  CAS  Google Scholar 

  • van Bergeijk SA, Salas-Leiton E, Cañavate JP (2010) Low and variable productivity and low efficiency of mass cultures of the haptophyte Isochrysis aff. galbana (T-iso) in outdoor tubular photobioreactors. Aquac Eng 43:14–23

    Article  Google Scholar 

  • Zhang CW, Richmond A (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Mar Biotechnol 5:302–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Erasmus + traineeship programme of the Università di Bologna and the CO2ALGAEFIX project (LIFE10 ENV/ES/000496) led by the AlgaEnergy company. We are most grateful to the Estación Experimental Las Palmerillas of the Fundación Cajamar for collaborating in this research. This research was supported by the Junta de Andalucía and the Plan Andaluz de Investigación (BIO 173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gabriel Acién.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ippoliti, D., González, A., Martín, I. et al. Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J Appl Phycol 28, 3159–3166 (2016). https://doi.org/10.1007/s10811-016-0856-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0856-x

Keywords

Navigation