Skip to main content
Log in

Standard flow cytometry as a rapid and non-destructive proxy for cell nitrogen quota

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The intracellular concentration of internal nitrogen (the “cell nitrogen quota”) is crucial to explain the rate at which phytoplankton populations grow. Hence, understanding changes in cell nitrogen quota is informative on aquatic primary productivity, phytoplankton ecology, eutrophication, and algal blooms. However, current methods to directly monitor per-cell nitrogen quota remain inaccurate, expensive, and time consuming. This study tested the hypothesis that nitrogen limitation triggers systematic optical changes in single cells, which can be rapidly and accurately monitored with a standard flow cytometer. The freshwater microalgae Desmodesmus armatus, Mesotaenium sp., Scenedesmus obliquus, and Tetraëdron sp. were reared in nitrogen-limited batch culture conditions across two treatments of initial population densities and monitored for cell nitrogen quota, medium nitrogen, and optical flow cytometric properties of red fluorescence and forward and side light scatters. Changes in nitrogen quota could be described with high accuracy (R 2 = 0.9) from observations of flow cytometric variables and medium nitrogen, and the relationship did not change across different species or initial population sizes. Red fluorescence was the most important variable explaining 77 % of the total variability in total cell nitrogen and up to 87 % when combined with side light scatter, the second most important variable. Our results indicate that optical flow cytometric variables are a convenient and reliable method to estimate nitrogen quota in microalgal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194

    Article  CAS  PubMed  Google Scholar 

  • Balfoort HW, Berman T, Maestrini SY, Wenzel A, Zohary T (1992) Flow-cytometry—instrumentation and application in phytoplankton research. Hydrobiologia 238:89–97

    Article  Google Scholar 

  • Barton K (2014) R Package “MuMIn”: Model selection and model averaging based on information criteria (AICc and alike)

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  • Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731

    Article  CAS  Google Scholar 

  • Bordi F, Neeck S, Scolese C (1999) Contribution of EOS Terra to Earth science. In: Fujisada H, Lurie JB (eds) Sensors, systems, and next-generation satellites, vol 3870, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham, pp 260–268

    Google Scholar 

  • Brookes JD, Geary SM, Ganf GG, Burch MD (2000) Use of FDA and flow cytometry to assess metabolic activity as an indicator of nutrient status in phytoplankton. J Mar Freshw Res 51:817–823

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Cavender-Bares KK, Mann EL, Chisholm SW, Ondrusek ME, Bidigare RR (1999) Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol Oceanogr 44:237–246

    Article  CAS  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96

    Google Scholar 

  • Clescerl LS, Greenberg AE, Eaton AD (1999) 4500 NO3 Nitrogen (Nitrate). In: APHA, AWWA, WPCF (eds) Standard Methods For Examination of Water and Wastewater. 20th edn. Amer Public Health Assn

  • Cleveland JS, Perry MJ (1987) Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar Biol 94:489–497

    Article  CAS  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  CAS  Google Scholar 

  • Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • da Silva TL, Roseiro JC, Reis A (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol 30:225–232

    Article  PubMed  Google Scholar 

  • Davey M, Tarran GA, Mills MM, Ridame C, Geider RJ, LaRoche J (2008) Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol Oceanogr 53:1722–1733

    Article  CAS  Google Scholar 

  • de la Jara A, Mendoza H, Martel A, Molina C, Nordströn L, de la Rosa V, Díaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Delia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764

    Article  CAS  Google Scholar 

  • Demers S, Davis K, Cucci TL (1989) A flow cytometric approach to assessing the environmental and physiological status of phytoplankton. Cytometry 10:644–652

    Article  CAS  PubMed  Google Scholar 

  • Doan TTY, Obbard JP (2011) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. Glob Change Biol Bioenergy 3:264–270

    Article  CAS  Google Scholar 

  • Dodds WK, Strauss EA, Lehmann R (1993) Nutrient dilution and removal bioassays to estimate phytoplankton response to nutrient control. Arch Hydrobiol 128:467–481

    Google Scholar 

  • Dortch Q, Clayton JR, Thoresen SS, Ahmed SI (1984) Species-differences in accumulation of nitrogen pools in phytoplankton. Mar Biol 81:237–250

    Article  CAS  Google Scholar 

  • Dubelaar GBJ, Jonker RR (2000) Flow cytometry as a tool for the study of phytoplankton. Sci Mar 64:135–156

    Article  Google Scholar 

  • DuRand MD, Olson RJ (1996) Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton. Deep-Sea Res II 43:891–906

    Article  Google Scholar 

  • DuRand MD, Olson RJ (1998) Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating individual-cell to bulk measurements. Limnol Oceanogr 43:1107–1118

    Article  Google Scholar 

  • DuRand MD, Green RE, Sosik HM, Olson RJ (2002) Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38:1132–1142

    Article  Google Scholar 

  • Dusenberry JA, Olson RJ, Chisholm SW (1999) Frequency distributions of phytoplankton single-cell fluorescence and vertical mixing in the surface ocean. Limnol Oceanogr 44:431–436

    Article  Google Scholar 

  • Eaton A, Clesceri L, Rice E, Greenberg A (2005) Protocol 4500-N C. Persulfate Method. In: APHA, AWWA, WPCF (eds) Standard Methods for the examination of water and wastewater. 21 edn. Amer Public Health Assn

  • Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  PubMed  Google Scholar 

  • Graziano LM, Geider RJ, Li WKW, Olaizola M (1996) Nitrogen limitation of North Atlantic phytoplankton: analysis of physiological condition in nutrient enrichment experiments. Aquat Microb Ecol 11:53–64

    Article  Google Scholar 

  • Gromping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17(1)

  • Gromping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147

    Article  Google Scholar 

  • Grover JP (1991) Resource competition in a variable environment—phytoplankton growing according to the variable-internal-stores model. Am Nat 138:811–835

    Article  Google Scholar 

  • Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20° and 70° W. Polar Biol 3:153–165

    Article  CAS  Google Scholar 

  • Hecky R, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822

    Article  CAS  Google Scholar 

  • Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681

    Article  PubMed  Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110

    Article  Google Scholar 

  • Hyka P, Lickova S, Pribyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  CAS  PubMed  Google Scholar 

  • Ikaran Z, Suárez-Alvarez S, Urreta I, Castañón S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144

    Article  Google Scholar 

  • Jacquet S, Lennon JF, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1931

    CAS  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II. Plant Physiol 88:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanoul A, Coleman T, Asher SA (2002) UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal Chem 74:1458–1461

    Article  PubMed  Google Scholar 

  • Li G, Brown CM, Jeans JA, Donaher NA, McCarthy A, Campbell DA (2014) The nitrogen costs of photosynthesis in a diatom under current and future pCO. New Phytol 205:533–543

    Article  PubMed  Google Scholar 

  • Liu SW, Qiu BS (2012) Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159:519–532

    Article  CAS  Google Scholar 

  • Luning K (2005) Endogenous rhythms and daylength effects in macroalgal development. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, Burlington, pp 347–364

    Google Scholar 

  • Malerba ME, Connolly SR, Heimann K (2012) Nitrate-nitrite dynamics and phytoplankton growth: formulation and experimental evaluation of a dynamic model. Limnol Oceanogr 57:1555–1571

    Article  CAS  Google Scholar 

  • Mas S, Roy S, Blouin F, Mostajir B, Therriault JC, Nozais C, Demers S (2008) Diel variations in optical properties of Imantonia rotunda (Haptophyceae) and Thalassiosira pseudonana (Bacillariophyceae) exposed to different irradiance levels. J Phycol 44:551–563

    Article  CAS  Google Scholar 

  • Mulholland MR, Lomas MW (2008) Nitrogen uptake and assimilation. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in Marine Environment, 2nd edn. Elsevier, Amsterdam, pp 303–384

    Chapter  Google Scholar 

  • Nichols HW (1973) Growth media - freshwater. In: Stein J (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  • Olson RJ, Shalapyonok A, Sosik HM (2003) An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot. Deep-Sea Res I 50:301–315

    Article  Google Scholar 

  • Raimbault P, Diaz F, Pouvesle W, Boudjellal B (1999) Simultaneous determination of particulate organic carbon, nitrogen and phosphorus collected on filters, using a semi-automatic wet-oxidation method. Mar Ecol Prog Ser 180:289–295

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Roenneberg T, Mittag M (1996) The circadian program of algae. Semin Cell Dev Biol 7:753–763

    Article  CAS  Google Scholar 

  • RStudio (2013) version 0.98.507, Boston (MA), url http://www.rstudio.org/

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Shelly K, Holland D, Beardall J (2010) Assessing nutrient status of microalgae using chlorophyll a fluorescence. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences methods and applications. Springer, Dordrecht, pp 223–236

    Chapter  Google Scholar 

  • Solorzano L, Sharp JH (1980) Determination of total dissolved nitrogen in natural-waters. Limnol Oceanogr 25:751–754

    Article  CAS  Google Scholar 

  • Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells—interpretation of flow cytometric signals. Limnol Oceanogr 34:1749–1761

    Article  CAS  Google Scholar 

  • Sosik HM, Olson RJ, Armbrust EV (2010) Flow cytometry in phytoplankton research. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences methods and applications. Springer, Dordrecht, pp 171–186

    Chapter  Google Scholar 

  • Strong DR, Whipple AV, Child AL, Dennis B (1999) Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80:2750–2761

    Article  Google Scholar 

  • Thyssen M, Gregori GJ, Grisoni JM, Pedrotti ML, Mousseau L, Artigas LF, Marro S, Garcia N, Passafiume O, Denis MJ (2014) Onset of the spring bloom in the northwestern Mediterranean Sea: influence of environmental pulse events on the in situ hourly-scale dynamics of the phytoplankton community structure. Front Microbiol 5:387. doi:10.3389/fmicb.2014.00387

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermans KR, Davey MS, Bvd W, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA, Baar HJW (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287–297

    Article  CAS  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Vanucci S, Guerrini F, Milandri A, Pistocchi R (2010) Effects of different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima. Harmful Algae 9:590–599

    Article  CAS  Google Scholar 

  • Veldhuis MJW, Kraay GW (2000) Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar 64:121–134

    Article  Google Scholar 

  • von Dassow P, van den Engh G, Iglesias-Rodriguez D, Gittins JR (2012) Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J Plankton Res 34:1011–1027

    Article  Google Scholar 

  • Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen E, Legendre L, Murphy LS, Perry MJ, Phinney DA, Pomponi SA, Spinrad RW, Wood M, Yentsch CS, Zahuranec BJ (1983) Flow-cytometry and cell sorting—a technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280

    Article  Google Scholar 

  • Zettler ER, Olson RJ, Binder BJ, Chisholm SW, Fitzwater SE, Gordon RM (1996) Iron-enrichment bottle experiments in the equatorial Pacific: responses of individual phytoplankton cells. Deep Sea Res II 43:1017–1029

    Article  CAS  Google Scholar 

  • Zhou Q, Chen W, Zhang H, Peng L, Liu L, Han Z, Wan N, Li L, Song L (2012) A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments. J Environ Sci (China) 24(9):1709–1716

    Article  CAS  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to the North Queensland Algal Identification and Culturing Facility (NQAIF), in particular Stan Hudson and Florian Berner. We also thank A/Prof Bruce Bowden and Prof James Burnell for the assistance in laboratory protocols. Finally, we thank Dr Lyndon Llewellyn, Dr Christian Lonborg, Dr Murray Logan, and Dr Catia Carreira for the helpful advice. This research was supported by AIMS@JCU (aims.jcu.edu.au), the Australian Institute of Marine Science (www.aims.gov.au), the Advanced Manufacturing Cooperative Research Centre (Project 2.3.4), and James Cook University (www.jcu.edu.au). We also thank the reviewers, whose comments and suggestions helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martino E. Malerba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malerba, M.E., Connolly, S.R. & Heimann, K. Standard flow cytometry as a rapid and non-destructive proxy for cell nitrogen quota. J Appl Phycol 28, 1085–1095 (2016). https://doi.org/10.1007/s10811-015-0642-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0642-1

Keywords

Navigation