Skip to main content

Advertisement

Log in

Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Iron plays an important role in marine primary productivity, and Synechococcus species as major contributors to the total photosynthetic biomass in the world’s oceans might be limited by iron supply in some regions. The present study aimed to compare the photosynthesis and flow cytometric signals of four Synechococcus strains grown under different iron concentrations with either nitrate or ammonium as the sole nitrogen source. Two oceanic strains were much more sensitive to iron limitation than two coastal strains. The inhibition of iron limitation on the growth, maximal PSII photochemical yield, maximal rate of relative electron transport and photochemical quenching of the two oceanic strains was higher than for their coastal counterparts. Under iron limitation condition, the connectivity factor between individual photosynthetic units (ρ) increased for the two coastal strains, while decreased for the two oceanic strains. Furthermore, iron limitation accelerated the Q A re-oxidation of the two oceanic strains and the PQ pool re-oxidation of the two coastal strains. Under iron limitation condition, the cell size of the two coastal strains and intracellular pigment concentrations of the two oceanic strains decreased, while the side light scatter/front light scatter (SS/FS) ratio of the two coastal strains increased. In contrast to iron limitation, nitrogen source only marginally affected the photosynthesis of the four Synechococcus strains. Ammonium enhanced the growth of the two coastal strains under iron-replete condition. For the two oceanic strains, ammonium increased their cell size and decreased their SS/FS ratio and intracellular pigment concentrations under iron-deplete and iron-replete conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bailey S, Mann NH, Robinson C, Scanlan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280

    Article  CAS  Google Scholar 

  • Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman AR (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283:840–843

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511

    Article  CAS  Google Scholar 

  • Bibby TS, Zhang Y, Chen M (2009) Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PLoS ONE 4:e4601

    Article  Google Scholar 

  • Boulay C, Abasova L, Six C, Vass I, Kirilovsky D (2008) Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim Biophys Acta 1777:1344–1354

    Article  CAS  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  CAS  Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol Oceanogr 36:1756–1771

    Article  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  Google Scholar 

  • Campbell DA, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  Google Scholar 

  • Cavender-Bares KK, Mann EL, Chisholm SW, Ondrusek ME, Bidigare RR (1999) Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol Oceanogr 44:237–246

    Article  CAS  Google Scholar 

  • Chadd HE, Joint IR, Mann NH, Carr NG (1996) The marine picoplankter Synechococcus sp. WH 7803 exhibits an adaptive response to restricted iron availability. FEMS Microbiol Ecol 21:69–76

    Article  CAS  Google Scholar 

  • Cullen JJ (1991) Hypotheses to explain high-nutrient conditions in the open sea. Limnol Oceanogr 36:1578–1599

    Article  CAS  Google Scholar 

  • El Bissati K, Delphin E, Murata N, Etienne AL, Kirilovsky D (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochim Biophys Acta 1457:229–242

    Article  CAS  Google Scholar 

  • Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46:86–94

    Article  CAS  Google Scholar 

  • Geiß U, Vinnemeier J, Kunert A, Lindner I, Gemmer B, Lorenz M, Hagemann M, Schoor A (2001) Detection of the isiA gene across cyanobacterial strains: potential for probing iron deficiency. Appl Environ Microbiol 67:5247–5253

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36:1772–1782

    Article  CAS  Google Scholar 

  • Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575

    Article  CAS  Google Scholar 

  • Grossman AR, Mackey KR, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oceans: hypotheses concerning alternate routes of electron flow. J Phycol 46:629–634

    Article  CAS  Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:1621–1626

    Article  CAS  Google Scholar 

  • Henley WJ, Yin Y (1998) Growth and photosynthesis of marine Synechococcus (cyanophyceae) under iron stress. J Phycol 34:94–103

    Article  CAS  Google Scholar 

  • Herdman M, Castenholz RW, Iteman I, Waterbury JB, Rippka R (2001) Subsection I. (Formerly Chroococcales Wettstein 1924, emend. Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Boone DR, Castenmholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer Publishers, New York, pp 493–514

    Google Scholar 

  • Hudson RJM, Morel FMM (1993) Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res I 40:129–150

    Article  CAS  Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Kirk JTO (1976) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells. New Phytol 77:341–358

    Article  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  Google Scholar 

  • Kudo I, Harrison PJ (1997) Effect of iron nutrition on the marine cyanobacterium Synechococcus grown on different N sources and irradiances. J Phycol 33:232–240

    Article  CAS  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    Article  CAS  Google Scholar 

  • Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, San Diego, pp 253–267

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • McDonald AE, Vanlerberghe GC (2005) Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349:15–24

    Article  CAS  Google Scholar 

  • Milligan AJ, Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 36:78–86

    Article  CAS  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res A 28:1375–1393

    Article  Google Scholar 

  • Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947

    Article  CAS  Google Scholar 

  • Morel FMM, Rueter JG, Anderson DM, Guillard RRL (1979) Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J Phycol 15:135–141

    Article  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    Article  CAS  Google Scholar 

  • Neale PJ, Cullen JJ, Yentsch CAL (1989) Bio-optical inferences from chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry? Limnol Oceanogr 34:1739–1748

    Article  CAS  Google Scholar 

  • Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel, PMV, Palenik B, Morel FMM (1988/1989) Preparation and chemistry of the artificial algal culture medium. Aquil Biol Oceanogr 6:443–461

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J et al (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    Article  CAS  Google Scholar 

  • Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R et al (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. PNAS 103:13555–13559

    Article  CAS  Google Scholar 

  • Parker DR, Chaney RL, Norvell WA (1995) Chemical equilibrium models: applications to plant nutrition research. In: Loeppert RH, Schwab AP, Goldberg S (eds) Chemical equilibrium and reaction models. Soil Science Society of America, Madison, pp 163–200

    Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    Article  CAS  Google Scholar 

  • Rakhimberdieva M, Stadnichuk I, Elanskaya I, Karapetyan N (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574:85–88

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD, Kűhl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639–646

    Article  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  CAS  Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279–287

    Article  CAS  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18

    Article  CAS  Google Scholar 

  • Raven JA (1998) Small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Raven JA, Wollenweber B, Handley LL (1992) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol 121:19–32

    Article  CAS  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Rivers AR, Jakuba RW, Webb EA (2009) Iron stress genes in marine Synechococcus and the development of a flow cytometric iron stress assay. Environ Microbiol 11:382–396

    Article  CAS  Google Scholar 

  • Rueter JG, Unsworth NL (1991) Response of marine Synechococcus (Cyanophyceae) cultures to iron nutrition. J Phycol 27:173–178

    Article  CAS  Google Scholar 

  • Ryther JH, Kramer DD (1961) Relative iron requirement of some coastal and offshore plankton algae. Ecology 42:444–446

    Article  CAS  Google Scholar 

  • Scanlan DJ (2003) Physiological diversity and niche adaptation in marine Synechococcus. Adv Microb Physiol 47:1–64

    Article  CAS  Google Scholar 

  • Scott M, McCollum C, Vasil’ev S, Crozier C, Espie GS, Krol M, Huner NPA, Bruce D (2006) Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45:8952–8958

    Article  CAS  Google Scholar 

  • Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals. Limnol Oceanogr 34:1749–1761

    Article  CAS  Google Scholar 

  • Spiller S, Terry N (1980) Limiting factors in photosynthesis. Plant Physiol 65:121–125

    Article  CAS  Google Scholar 

  • Strzepek RF (2003) Photosynthetic iron requirements of marine diatoms. Ph.D. dissertation, The University of British Columbia, Vancouver, p 222

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Article  CAS  Google Scholar 

  • Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351:55–57

    Article  CAS  Google Scholar 

  • Sunda WG, Price NM, Morel FMM (2005) Trace metal ion buffers and their use in culture studies. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, San Diego, pp 35–63

    Google Scholar 

  • Thompson PA, Levasseur ME, Harrison PJ (1989) Light-limited growth on ammonium vs. nitrate: what is the advantage for marine phytoplankton? Limnol Oceanogr 34:1014–1024

    Article  CAS  Google Scholar 

  • Timmermans KR, Davey MS, van der Wagt B, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA, de Baar HJW (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287–297

    Article  CAS  Google Scholar 

  • Vassiliev IR, Kolber Z, Wyman KD, Mauzerall D, Shukla VK, Falkowski PG (1995) Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. Plant Physiol 109:963–972

    CAS  Google Scholar 

  • Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RR, Brand LE (1979) Widespread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature 277:293–294

    Article  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterizations of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71–120

    Google Scholar 

  • Wells ML, Price NM, Bruland KW (1994) Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481–1486

    Article  CAS  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar Chem 48:157–182

    Article  CAS  Google Scholar 

  • Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol Oceanogr 39:1979–1984

    Article  CAS  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  CAS  Google Scholar 

  • Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672

    Article  CAS  Google Scholar 

  • Zumft WG, Spiller H (1971) Characterization of a flavodoxin from the green alga Chlorella. Biochem Biophys Res Commun 45:112–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 30970212) and the Program for New Century Excellent Talents in University (NCET-08-0786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Sheng Qiu.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SW., Qiu, BS. Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159, 519–532 (2012). https://doi.org/10.1007/s00227-011-1832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1832-2

Keywords

Navigation