Skip to main content
Log in

Botryococcus braunii and Nannochloropsis oculata extracts inhibit cholinesterases and protect human dopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Extracts of Botryococcus braunii and Nannochloropsis oculata were evaluated for inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase (TYRO) and capacity to attenuate hydrogen peroxide (H2O2)-induced injury in the human dopaminergic cell line SH-SY5Y. We also report the antioxidant activity, the total phenolic content (TPC) and the fatty acid (FA) profile of these microalgae. Both species had low levels of TPC and considerable amounts of polyunsaturated fatty acids (PUFA). The highest radical scavenging activity (RSA) against 1,1-diphenyl-2-picrylhydrazyl (DPPH) was observed in the acetone extract of B. braunii and in the diethyl ether extracts of both strains. The acetone extract of B. braunii had the highest RSA against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid). The extracts had a higher capacity to chelate iron than copper, and the highest iron chelation was achieved with the hexane extract of N. oculata. The diethyl ether and water extracts of the latter species also displayed the highest copper chelation. Except for the acetone extract of B. braunii and the water extract of N. oculata, all samples inhibited AChE, especially the hexane extract of N. oculata. Samples had moderate BChE inhibition and no effect towards TYRO. Almost all samples effectively protected neuronal cells against oxidative stress induced by H2O2. These results suggest possible novel applications of biomass from those microalgae in the pharmaceutical industry and/or as functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aremu AO, Masondo NA, Stirk WA, Ördög V, Van Staden J (2014) Influence of culture age on the phytochemical content and pharmacological activities of five Scenedesmus strains. J Appl Phycol 26:407–415

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cerón MC, García-Malea MC, Rivas J, Acien FG, Fernández JM, Del Río E, Guerrero MG, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112–1119

    Article  PubMed  Google Scholar 

  • Coesel SN, Baumgartner AC, Teles LM, Ramos AR, Henriques NM, Cancela L, Varela J (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:601–611

    Article  Google Scholar 

  • Custódio L, Justo T, Silvestre L, Barradas A, Vizetto C, Pereira H, Barreira L, Rauter AP, Alberício F, Varela J (2012) Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem 131:134–140

    Article  Google Scholar 

  • Custódio L, Soares F, Pereira H, Barreira L, Vizetto-Duarte C, Rodrigues MJ, Rauter MA, Alberício F, Varela J (2014) Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: possible application in the pharmaceutical and functional food industries. J Appl Phycol 26:151–161

    Article  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  PubMed  Google Scholar 

  • Dall’Acqua S (2013) Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Bot Target Ther 3:19–28

    Article  Google Scholar 

  • Danielson SR, Andersen K (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44:1787–1794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doughman SD, Krupanidhi S, Sanjeevi CB (2007) Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev 3:198–203

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Sharma S (2006) Metallothioneins 1 and 2 attenuate peroxynitrite-induced oxidative stress in Parkinson disease. Exp Biol Med 231:1576–1583

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Jeong SY, Jung HA, Choi JS, Min BS, Woo MH (2010) Anticholinesterase and antioxidant constituents from Gloiopeltis furcata. Chem Pharm Bull 58:1236–1239

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Proença C, Serralheiro MLM, Araújo MEM (2006) The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 108:31–37

    Article  CAS  PubMed  Google Scholar 

  • Filho J, Medeiros K, Diniz M, Batista L, Athayde-Filho P, Silva M, da Cunha E (2006) Natural products inhibitors of the enzyme acetylcholinesterase. Braz J Pharmacogn 16:258–285

    Article  Google Scholar 

  • Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39:147–157

    Article  CAS  PubMed  Google Scholar 

  • Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50

    Article  CAS  Google Scholar 

  • Hasegawa T (2010) Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease. Int J Mol Sci 11:1082–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257

    Article  CAS  PubMed  Google Scholar 

  • Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93:703–709

    Article  PubMed  Google Scholar 

  • Igarashi M, Ma K, Gao F, Kim H-W, Rapoport SI, Rao JS (2011) Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer disease prefrontal cortex. J Alzheimers Dis 24:507–517

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MTH (2007) Molecular design of tyrosinase inhibitors: a critical review of promising novel inhibitors from synthetic origins. Pure App Chem 79:2277–2295

    Article  CAS  Google Scholar 

  • Kidd PM (2008) Alzheimer disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 13:85–115

    PubMed  Google Scholar 

  • Kim S-S, Park R-Y, Jeon H-J, Kwon Y-S, Chun W (2005) Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SHSY5Y cells. Phytother Res 19:243–245

    Article  CAS  PubMed  Google Scholar 

  • Konishi T (2009) Brain oxidative stress as basic target of antioxidant traditional oriental medicines. Neurochem Res 34:711–716

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen I, Blondeau N, Heurteau C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  PubMed  Google Scholar 

  • Li H-B, Cheng K-W, Wong C-C, Fan K-W, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Martins DA, Custódio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM (2013) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11:2259–2281

    Article  PubMed Central  PubMed  Google Scholar 

  • Mattson MP (2002) Excitotoxic and excitoprotective mechanisms, abundant targets for the prevention and treatment of neurodegenerative disorders. NeuroMol Med 3:65–94

  • Megías C, Pastor-Cavada E, Torres-Fuentes C, Girón-Calle J, Alaiz M, Jua R, Julio P, Javier V (2009) Chelating, antioxidant and antiproliferative activity of Vicia sativa polyphenol extracts. Eur Food Res Technol 230:353–359

    Article  Google Scholar 

  • Moreno S, Scheyer T, Romano C, Vojnov A (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40:223–231

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Muller U, Krieglstein J (1995) Prolonged pretreatment with alpha-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron induced injury. J Cereb Blood Flow Metab 5:624–630

    Article  Google Scholar 

  • Nerya O, Vaya J, Musa R, Izrael S, Ben-Arie R, Tamir S (2003) Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem 51:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641

    Article  CAS  PubMed  Google Scholar 

  • Orhan I, Kartal M, Naz Q, Ejaz A, Yilmaz G, Kan YKB, Sener B, Choudhary MI (2007) Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem 103:1247–1254

    Article  CAS  Google Scholar 

  • Pan W, Dancik CM, Nelson VM, Jiang Z-G, Lebowitz MS, Ghanbari HA (2009) A novel neuroprotectant PAN-811 protects neurons from oxidative stress. Cent Eur J Biol 4:34–40

    Article  CAS  Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012) Marine macroalgae as a source of polyunsaturated fatty acids for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pettenati C, Annicchiarico R, Caltagirone C (2003) Clinical pharmacology of anti-Alzheimer drugs. Fundam Clin Pharmacol 17:659–672

    Article  CAS  PubMed  Google Scholar 

  • Prince M, Bryce R, Ferri C (2012). World Alzheimer Report 2011. London, UK: Alzheimer’s Disease International (ADI)

  • Pulok KM, Venkatesan K, Mainak M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300

    Article  Google Scholar 

  • Qureshi GA, Parvez HS (2007) Oxidative stress and neurodegenerative disorders. Elsevier, The Netherlands

    Google Scholar 

  • Rao A, Sarada R, Baskaran V, Ravishankar GA (2006) Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agric Food Chem 54:4593–4599

    Article  CAS  PubMed  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  CAS  PubMed  Google Scholar 

  • Tempone AG, Martins de Oliveira C, Berlinck RG (2011) Current approaches to discover marine antileishmanial natural products. Planta Med 77:572–585

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepakc M (2007) Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol 109:359–363

  • Wang LJ, Li D, Zou L, Chen XD, Cheng QY, Yamaki K, Li LT (2007) Antioxidative activity of Douchi (A Chinese traditional salt-fermented soybean food) extracts during its processing. Int J Food Prop 10:385–396

    Article  CAS  Google Scholar 

  • Weinreb O, Mandel S, Bar-Am O, Amit T (2011) Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer’s disease: a tribute to Moussa Youdim. J Neural Transm 118:479–492

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Sorribas A, Howes M-JR (2011) Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep 28:48–77

  • Willis LM, Shukitt-Hale B, Joseph JA (2009) Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain. Genes Nutr 4:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao XQ, Wang R, Tang XC (2000) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61:564–569

    Article  CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S, Carasso RL, David I, Mostofsky DI (2002) The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 23:843–853

    Article  CAS  PubMed  Google Scholar 

  • Zhila N, Kalacheva G, Volova T (2011) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the SEABIOMED project (PTDC/MAR/103957/2008), funded by the Foundation for Science and Technology (FCT) and the Portuguese National Budget. All the algal species used in this study were provided by NECTON S.A. (Portugal). The authors dedicate this article to the memory of Fernando Soares, whose untimely passing remind us all of the pressing need for novel medical treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Custódio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Custódio, L., Soares, F., Pereira, H. et al. Botryococcus braunii and Nannochloropsis oculata extracts inhibit cholinesterases and protect human dopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity. J Appl Phycol 27, 839–848 (2015). https://doi.org/10.1007/s10811-014-0369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0369-4

Keywords

Navigation