Skip to main content

Advertisement

Log in

Precursor solution concentration-dependent electrochemical supercapacitive behavior of spray-deposited RuO2 films using aqueous/organic solvent mixtures

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

RuO2 electrodes are spray-deposited with various precursor solution concentrations using aqueous/organic solvent mixtures. RuO2 has a preferential growth along the (110) plane of the rutile tetragonal crystal structure with porous morphology. The bandgap decreases from 2.05 to 1.77 eV with increasing precursor solution concentrations. Electrical resistivity of 0.12 × 104 Ωcm has been observed for RuO2 films prepared with a 50 mM precursor solution concentration. RuO2 film showed a specific capacitance of 893 Fg−1 at a scan rate of 5 mVs−1 and 964 Fg−1 at 0.5 Ag−1 with 93.67% capacitance retention over 1000 cycles. As a RuO2 electrode supercapacitor device, the energy density reaches 76.56 Whkg−1 at a power density of 1701 Wkg−1. The solution resistance is about 0.32 Ω for the RuO2 electrode prepared with a precursor solution concentration of 50 mM. The use of an aqueous/organic mixture as solvent improves the electrochemical supercapacitive performance of RuO2 electrodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

It is hereby assured that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. Zhai Z, Zhang L, Tianmin Du, Ren B, Yuelong Xu, Wang S, Miao J, Liu Z (2022) A review of carbon materials for supercapacitors. Mater Des 221:111017

    Article  CAS  Google Scholar 

  2. Gomez Vidales A, Sridhar D, Meunier JL, Omanovic S (2020) Nickel oxide on directly grown carbon nanofibers for energy storage applications. J Appl Electrochem 50:1217–1229

    Article  CAS  Google Scholar 

  3. Chakraborty S, Simon R, Antonia TZR, Anoop V, Mary NL (2022) Microwave-assisted synthesis of ZnO decorated acid functionalized carbon nanotubes with improved specific capacitance. J Appl Electrochem 52:103–114

    Article  CAS  Google Scholar 

  4. Abas A, Omer AA, Wei I, Lu Q (2022) Efficient synthesis of enwrapped CuO@rGO nanowire arrays to improve supercapacitor electrode performance. J Appl Electrochem 52:813–820

    Article  CAS  Google Scholar 

  5. Kate RS, Pathan HM, Kalubarme R, Kale BB, Deokate RJ (2022) Spray pyrolysis: approaches for nanostructured metal oxide films in energy storage application. J Energy Storage 54:105387

    Article  Google Scholar 

  6. Wang G, Kuangliang Xu, Yan Z, Wang G, Xiang M, Zhihua Xu (2022) Hierarchical MnO2/hollow carbon spheres composites for asymmetric supercapacitors with enhanced performance. J Appl Electrochem 52:963–978

    Article  CAS  Google Scholar 

  7. Conway BE (1999) The electrochemical behavior of ruthenium oxide (RuO2) as a material for electrochemical capacitors. In: Electrochemical Supercapacitors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3058-6_11

  8. Filimonenkov IS, Urvanov SA, Kazennov NV, Tarelkin SA, Tsirlina GA, Mordkovich VZ (2022) Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors. J Appl Electrochem 52:487–498

    Article  CAS  Google Scholar 

  9. Navajsharif SS, Shivaji BU, Vikas JM, Jasmin SS, Vaibhav CL, Supareak P, Chandrakant DL, Pongsakorn K (2022) Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J Alloys Compd. 893:161998

    Article  Google Scholar 

  10. Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26

    Article  CAS  Google Scholar 

  11. Zhang B-B, Hao H, Zhang F-Y, Wang B, Xue J, Jiao L-Y, Li Z (2020) SubPc-Br/NiMoO4 composite as a high-performance supercapacitor electrode materials. J Appl Electrochem 50:1007–1018

    Article  CAS  Google Scholar 

  12. Cho S, Kim J, Han J, Shin G, Park S, Yeon S, Jana A, Kim H, Im H (2022) Self-assembled RuO2 nanoneedles on Ta/Cu foil for a robust and high-performance supercapacitor electrode. Surf Interfaces 31:102069

    Article  CAS  Google Scholar 

  13. Yadav AA, Jadhav SN, Chougule DM, Patil PD, Chavan UJ, Kolekar YD (2016) Spray-deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim Acta 206:134–142

    Article  CAS  Google Scholar 

  14. Rohan BA, Hojae L, Ki HL, Hyeonhoo L, Ganesh KV, Young-Beom K, Tae HH (2022) Ultrafast flashlight sintered mesoporous NiO nanosheets for stable asymmetric supercapacitors. Chem. Eng. J. 436:135041

    Article  Google Scholar 

  15. Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111

    Article  CAS  Google Scholar 

  16. Deokate RJ, Kate R, Shinde NM, Mane RS (2021) Energy storage potential of sprayed α-MoO3 thin films. New J Chem 45:582–589

    Article  CAS  Google Scholar 

  17. Yadav AA (2021) Physical and electrochemical properties of spray-deposited Co3O4 thin films. Phase Transit 94(10):691–704

    Article  CAS  Google Scholar 

  18. Deokate RJ, Kalubarme RS, Park C-J, Lokhande CD (2017) Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim Acta 224:378–385

    Article  CAS  Google Scholar 

  19. Yadav AA, Deshmukh TB, Deshmukh RV, Patil DD, Chavan UJ (2016) Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium. Thin Solid Films 616:351–358

    Article  CAS  Google Scholar 

  20. Yadav AA (2016) Preparation and electrochemical properties of spray-deposited α-Fe2O3 from nonaqueous medium for supercapacitor applications. J Mater Sci Mater Electron 27:12876–12883

    Article  CAS  Google Scholar 

  21. Balamuralitharan B, Cho IH, Bak JS, Kim HJ (2018) V2O5 nanorod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. New J Chem 42:11862–11868

    Article  Google Scholar 

  22. Ingole RS, Kondawar SB, Lokhande BJ (2016) Substrate dependent morphological and electrochemical properties of V2O5 thin films prepared by spray pyrolysis. J Mater Sci Mater Electron 28(3):2385–2391

    Article  Google Scholar 

  23. Ingole RS, Lokhande BJ (2016) Electrochemical properties of dip-coated vanadium pentaoxide thin films. Bull Mater Sci 39:1603–1608

    Article  CAS  Google Scholar 

  24. Zhang Q, Dawei Gu, Li H, Ze Xu, Sun H, Li J, Wang L, Shen L (2021) Energy release from RuO2//RuO2 supercapacitors under dynamic discharge conditions. Electrochim Acta 367:137455

    Article  CAS  Google Scholar 

  25. Fugare BY, Lokhande BJ (2017) Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode application. Mater Sci Semicond Process 71:121–127

    Article  CAS  Google Scholar 

  26. Majumdar D, Maiyalagan T, Jiang Z (2019) Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6:4343–4372

    Article  CAS  Google Scholar 

  27. Patake VD, Lokhande CD, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Appl Surf Sci 255:4192–4196

    Article  CAS  Google Scholar 

  28. Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin L (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem A 3:15568–15575

    Article  CAS  Google Scholar 

  29. Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. J Power Sources 134:148–152

    Article  CAS  Google Scholar 

  30. Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao XS (2010) Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114:13608–13613

    Article  CAS  Google Scholar 

  31. Yoon YS, Cho WI, Lim JH, Choi DJ (2001) Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources 101:126–129

    Article  CAS  Google Scholar 

  32. Deshmukh PR, Pusawale SN, Jagadale AD, Lokhande CD (2012) Supercapacitive performance of hydrous ruthenium oxide (RuO2·nH2O) thin films deposited by SILAR method. J Mater Sci 47:1546–1553

    Article  CAS  Google Scholar 

  33. Luu TL, Ye KJ, Yong YJ (2017) Facile chemical bath deposition to fabricate RuO2 electrodes for electrochemical chlorine evolution. Desalination Water Treat 99:204–210

    Article  Google Scholar 

  34. Patil PS, Ennaoui EA, Lokhande CD, Müller M, Giersig M, Diesner K, Tributsch H (1997) Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films. Thin Solid Films 310:57–62

    Article  CAS  Google Scholar 

  35. Košević M, Stopic S, Bulan A, Kintrup J, Weber R, Stevanović J, Panić V, Friedrich B (2017) A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode. Adv Powder Technol 28:43–49

    Article  Google Scholar 

  36. Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray-deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510

    Article  CAS  Google Scholar 

  37. Barote MA, Kamble SS, Yadav AA, Suryavanshi RV, Deshmukh LP, Masumdar EU (2012) Thickness dependence of Cd0.825Pb0.175S thin film properties. Mater Lett 78:113–115

    Article  CAS  Google Scholar 

  38. Dhole IA, Navale YH, Pawar CS, Navale ST, Patil VB (2018) Physicochemical and supercapacitive properties of electroplated nickel oxide electrode: effect of solution molarity. J Mater Sci Mater Electron 29:5675–5687

    Article  CAS  Google Scholar 

  39. JCPDS card No. 88-0322

  40. Mahmoud SA, Akl AA, Kamal H, Abdel-Hady K (2002) Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis. Physica B 311:366–375

    Article  CAS  Google Scholar 

  41. Kim YL, Choi HA, Lee NS, Son B, Kim HJ, Baik JM, Lee Y, Lee C, Kim MH (2015) RuO2-ReO3 composite nanofibers for efficient electrocatalytic responses. Phys Chem Chem Phys 17:7435–7442

    Article  CAS  PubMed  Google Scholar 

  42. Cullity BD (1956) Elements of X-ray diffraction. Addison Wesley Publishing Company, Boston

    Google Scholar 

  43. Scherrer P (1918) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. vol. 2, 98–100

  44. Munawar T, Rehman MN, Nadeem MS, Mukhtar F, Manzoor S, Ashiq MN, Iqbal F (2021) Facile synthesis of Cr–Co co-doped CdO nanowires for photocatalytic, antimicrobial, and supercapacitor applications. J Alloys Compd 885:160885

    Article  CAS  Google Scholar 

  45. Kannan SK, Sundrarajan M (2015) Green synthesis of ruthenium oxide nanoparticles: Characterization and its antibacterial activity. Adv Powder Technol 26:1505–1511

    Article  CAS  Google Scholar 

  46. Yang Y, Liang Y, Zhang Y, Zhang Z, Li Z, Zhongai Hu (2015) Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes. New J Chem 39:4035–4040

    Article  CAS  Google Scholar 

  47. Lenar N, Paczosa-Bator B, Piech R (2019) Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pH-selective electrodes. Microchim Acta 186:777

    Article  CAS  Google Scholar 

  48. Ingole RS, Fugare BY, Lokhande BJ (2017) Ultrahigh specific capacitance of spray-deposited nanoporous interconnected ruthenium oxide electrode fabric for supercharged capacitor. J Mater Sci Mater Electron 28:16374–16383

    Article  CAS  Google Scholar 

  49. Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011) Sensing properties of sprayed antimony doped tin oxide thin films: Solution molarity. J Alloys Compd 509:3108–3115

    Article  CAS  Google Scholar 

  50. Patake VD, Lokhande CD (2008) Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl Surf Sci 254:2820–2824

    Article  CAS  Google Scholar 

  51. Belkind A, Orban Z, Vossen JL, Woollam JA (1992) Optical properties of RuO2 films deposited by reactive sputtering. Thin Solid Films 207:242–247

    Article  CAS  Google Scholar 

  52. El-Tantawy F, Al-Ghamdi AA, Al-Ghamdi AA, Al-Turki YA, Alshahrie A, Al-Hazmi F, Al-Hartomy OA (2017) Optical properties of nanostructured ruthenium dioxide thin films via sol-gel approach. J Mater Sci Mater Electron 28:52–59

    Article  CAS  Google Scholar 

  53. Yadav AA, Barote MA, Masumdar EU (2010) Studies on cadmium selenide (CdSe) thin films deposited by spray pyrolysis. Mater Chem Phys 121:53–57

    Article  CAS  Google Scholar 

  54. Ribera RC, van de Kruijs RWE, Yakshin AE, Bijkerk F (2015) Determination of oxygen diffusion kinetics during thin film ruthenium oxidation. J Appl Phys 118:055303

    Article  Google Scholar 

  55. Kim M, Hwang Y, Min K, Kim J (2013) Concentration dependence of graphene oxide/nanoneedle manganese oxide composites reduced by hydrazine hydrate for electrochemical supercapacitor. Phys Chem Chem Phys 15:15602–15611

    Article  CAS  PubMed  Google Scholar 

  56. Yadav AA, Chavan UJ (2017) Electrochemical supercapacitive performance of spray-deposited NiSnO3 thin films. Thin Solid Films 634:33–39

    Article  CAS  Google Scholar 

  57. More PD, Jadhav PR, Ghanwat AA, Dhole IA, Navale YH, Patil VB (2017) Spray synthesized hydrophobic α-Fe2O3 thin film electrodes for supercapacitor application. J Mater Sci Mater Electron 28:17839–17848

    Article  CAS  Google Scholar 

  58. Nisha B, Vidyalakshmi Y, Razack SA (2020) Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Adv Powder Technol 31:1001–1006

    Article  CAS  Google Scholar 

  59. Raja A, Son N, Swaminathan M, Kang M (2022) Electrochemical behavior of heteroatom doped on reduced graphene oxide with RuO2 for HER, OER, and supercapacitor applications. J Taiwan Inst Chem Eng 138:104471

    Article  CAS  Google Scholar 

  60. Sarkar S, Mukherjee D, Harini R, Nagaraju G (2022) Ionic liquid-assisted synthesis of tri-functional ruthenium oxide nanoplatelets for electrochemical energy applications. J Mater Sci 57:7680–7693

    Article  CAS  Google Scholar 

  61. Mondal SK, Munichandraiah N (2008) Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities. J Power Sources 175:657–663

    Article  CAS  Google Scholar 

  62. Patil UM, Kulkarni SB, Jamadade VS, Lokhande CD (2011) Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J Alloys Comp 509:1677–1682

    Article  CAS  Google Scholar 

  63. Zhang C, Zhu X, Wang Z, Sun P, Ren Y, Zhu J, Zhu J, Xiao D (2014) Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors. Nanoscale Res Lett 9:490

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There are no financial or non-financial interests.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Chandrashekhar R., and Dr Abhijit Yadav commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhijit A. Yadav.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Human and animal participation

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikkegowda, C.R., Yadav, A.A. Precursor solution concentration-dependent electrochemical supercapacitive behavior of spray-deposited RuO2 films using aqueous/organic solvent mixtures. J Appl Electrochem 53, 781–795 (2023). https://doi.org/10.1007/s10800-022-01806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01806-7

Keywords

Navigation