Skip to main content

Advertisement

Log in

Electrochemical properties of dip-coated vanadium pentaoxide thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Vanadium oxide (V2O5) thin films have been deposited on to the stainless-steel substrates by simple dip-coating technique using vanadium pentaoxide as an initial ingredient. Deposited samples were annealed at 773 K for 3 h in air. X-ray diffraction analysis of the sample shows crystalline with orthorhombic crystal structure. Scanning electron microscopy study depicts the homogeneous and dense surface morphology. Optical study proves the direct bandgap transition with energy ∼2.25 eV. Electrochemical performance of the deposited electrode was studied in 1 M NaNO 3 electrolyte using cyclic voltammetery, electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Prepared V2O5 electrode shows 207.50 F g−1 specific capacitance at the scan rate 5 mV s−1, specific energy, specific power and efficiency are 41.33 Wh kg−1, 21 kW kg−1 and 96.72%, respectively. The internal resistance observed from impedance spectroscopy is 8.77 ohm. Electrode exhibits excellent chemical stability up to 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sarangapani S, Tilak B V and Chen C P 1996 J. Electrochem. Soc. 143 3791

    Article  Google Scholar 

  2. Yan Y, Kim D H, Yang M and Schmuki P 2011 Chem. Commun. 47 7746

    Article  Google Scholar 

  3. Hu C C and Tsou T W 2002 Electrochem. Commun. 4 105

    Article  Google Scholar 

  4. Chen L M, Lai Q Y, Hao Y J, Zhao Y and Ji X Y 2009 , J. Alloys Compd. 467 465

    Article  Google Scholar 

  5. Conway B E 1999 Electrochemical supercapacitors (New York: Kluwer-Plenum)

    Book  Google Scholar 

  6. Pang S C, Anderson M A and Chapman T W 2000 , J. Electrochem. Soc. 147 44

    Article  Google Scholar 

  7. Xia N, Zhou T, Mo S, Zhou S, Zou W and Yuan D 2011 , J. Appl. Electrochem. 41 71

    Article  Google Scholar 

  8. Mayer S T, Pekala R W and Kaschmitter J L 1993 J. Electrochem. Soc. 140 446

    Article  Google Scholar 

  9. Prasad K R and Munichandraian N 2002 J. Electrochem. Soc. 149 A1393

    Article  Google Scholar 

  10. Mitra S, Shukla A K and Sampath S 2001 J. Power Sources 101 213

    Article  Google Scholar 

  11. Hu C C and Huang Y H 1999 J. Electrochem. Soc. 146 2465

    Article  Google Scholar 

  12. Lokhande C D, Dubal D P and Joo O -S 2011, Curr. Appl. Phys. 11 270

    Article  Google Scholar 

  13. Zheng J P and Jow T R 1995 J. Electrochem. Soc. 142 2699

    Article  Google Scholar 

  14. Hu C C, Huang Y H and Chang K H 2002 J. Power Sources 108 117

    Article  Google Scholar 

  15. Chang C and Chang K H 2000 Electrochim. Acta 45 2685

    Article  Google Scholar 

  16. Cheng F, He C, Shua D, Chen H, Zhang J, Tang S and Finlow E D 2011 Mater. Chem. Phys. 131 268

    Article  Google Scholar 

  17. Qu Q T, Shi Y, Li L L, Guo W L, Wu Y P, Zhang H P, Guan S Y and Holze R 2009 Electrochem. Commun. 11 1325

    Article  Google Scholar 

  18. Lota G, Frackowiak E, Mittal J and Monthioux M 2007 Chem. Phys. Lett. 434 73

    Article  Google Scholar 

  19. Thomberg T, Kurig H, Jänes A and Lust E 2011 Microporous Mesoporous Mater. 141 88

    Article  Google Scholar 

  20. Hua C -C, Huang C -M and Chang K -H 2008, J. Power Sources 185 1594

    Article  Google Scholar 

  21. Si Y C, Jiao L F, Yuan H T, Li H X and Wang Y M 2009 , J. Alloys Compd. 486 400

    Article  Google Scholar 

  22. Lee S M, Kim H S and Seong T Y 2011 J. Alloys Compd. 509 3136

    Article  Google Scholar 

  23. Cai C, Guan D S and Wang Y 2011 J. Alloys Compd. 509 909

    Article  Google Scholar 

  24. Wang S Q, Lu Z D, Wang D, Li C G, Chen C H and Yin Y D 2011 J. Mater. Chem. 21 6365

    Article  Google Scholar 

  25. Gu G, Schmid M, Chiu P W, Kozlov M, Munoz E and Baughman R H 2003 Nat. Mater. 2 316

    Article  Google Scholar 

  26. Strelcov E, Lilach Y and Kolmakov A 2009 Nano Lett. 9 2322

    Article  Google Scholar 

  27. Nair H, Gatt J E, Miller J T and Baertsch C D 2011 J. Catal. 279 144

    Article  Google Scholar 

  28. Wu C Z, Wei H, Ning B and Xie Y 2010 Adv. Mater. 22 1972

    Article  Google Scholar 

  29. Lee H Y and Goodenough J B 1999 J. Solid State Chem. 148 81

    Article  Google Scholar 

  30. Li J M, Chang K H and Hu C C 2010 Electrochem. Commun. 12 1800

    Article  Google Scholar 

  31. Chen L M, Lai Q Y, Zeng H M, Hao Y J and Huang J H 2011 J. Appl. Electrochem. 41 299

    Article  Google Scholar 

  32. Wang Y and Cao G 2006 Chem. Mater. 18 2787

    Article  Google Scholar 

  33. Liu Y Y, Clark M, Zhang Q F, Yu D M, Liu D W, Liu J and Cao G Z 2011 Adv. Energy Mater. 1 194

    Article  Google Scholar 

  34. Julien C, Guesdon J P, Gorenstein A, Khelfa A and Ivanov I 1995 Appl. Surf. Sci. 90 389

    Article  Google Scholar 

  35. Ozer N and Lampert C M 1999 Thin Solid Films 349 205

    Article  Google Scholar 

  36. Papaefthimiou S, Leftheriotis G and Yianoulis P 1999 Thin Solid Films 343 183

    Article  Google Scholar 

  37. Capone S, Rella R, Siciliano P and Vasanelli L 1999 Thin Solid Films 350 264

    Article  Google Scholar 

  38. MuthuKaruppasamy K 2008 Sol. Energy Mater. Sol. Cells 92 1322

    Article  Google Scholar 

  39. Patil C E, Tarwal N L, Shinde P S, Deshmukh H P and Patil P S 2009 J. Phys. D Appl. Phys. 42 025404

    Article  Google Scholar 

  40. Borlaf M, Colomer M T, Moreno R and Ortizb A L 2014 , J. Eur. Ceram. Soc. 34 4457

    Article  Google Scholar 

  41. Yimsiri P and Mackley M R 2006 Chem. Eng. Sci. 61 3496

    Article  Google Scholar 

  42. Goncalves P R G, Rangel J H G, Oliveira M M, Maciel A P and Longo E 2014 Ceram. Int. 40 12359

    Article  Google Scholar 

  43. Darling R B and Iwanaga S 2009 Sadhana 34 531

    Article  Google Scholar 

  44. Lokhande B J, Ambare R C, Mane R S and Bharadwaj S R 2013 Mater. Res. Bull. 48 2978

    Article  Google Scholar 

  45. Hu C, Yuan S and Hu S 2006 Electrochim. Acta 51 3013

    Article  Google Scholar 

  46. Wang C T and Huang H H 2008 J. Non-Cryst. Solids 354 3336

    Article  Google Scholar 

  47. Cullity B D 1978 Elements of X-ray diffraction 2nd edn. (Reading, Massachusetts, USA: Addison-Wesley Publishing Company) Vol. 284

  48. Ambare R C and Lokhande B J 2011 Inverties J. Renew. Energy 1 1

    Google Scholar 

  49. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 1515 627

    Article  Google Scholar 

  50. Lokhande B J, Ambare R C, Mane R S and Bharadwaj S R 2013 Curr. Appl. Phys. 13 985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J LOKHANDE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

INGOLE, R.S., LOKHANDE, B.J. Electrochemical properties of dip-coated vanadium pentaoxide thin films. Bull Mater Sci 39, 1603–1608 (2016). https://doi.org/10.1007/s12034-016-1292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1292-x

Keywords

Navigation