Skip to main content
Log in

A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Inverse micelle (IM) and ultrasound-assisted inverse micelle (UAIM) techniques were used to fabricate new Bi-MOF nanostructures. The results showed that the Bi-MOF sample made by ultrasound technique has a higher thermal stability (347 °C), smaller particles sizes (9.99 nm) and a larger specific surface area (21.43 m2/g). In this efficient technique, crystallization process is formed in a shorter time under environmental conditions, the experimental factors of UAIM method are designed by 2k−1 fractional factorial method, and the effective parameters include time duration, ultrasound power and temperature. The results show that the Bi-MOF nanostructures sample synthesized by UAIM method has desirable physicochemical behaviors. Cyclic voltammetry (CV) technique is used to investigate the electrocatalytic activity of Bi-MOF for electrochemical detection of 4-Aminophenol (4-AP). The results show great efficiency of Bi-MOF in the electrochemical detection of 4-AP. The effective product, new physicochemical features, and the significant electrochemical potential developed in this study can be related to the novel Bi-MOF, efficient synthesis route and 2k−1 factorial design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C (2021) Design strategies of two-dimensional metal–organic frameworks toward efficient electrocatalysts for N2 reduction: cooperativity of transition metals and organic linkers. Nanoscale 13:19247–19254

    CAS  PubMed  Google Scholar 

  2. Hashemi SH, Kaykhaii M, Keikha AJ, Mirmoradzehi E, Sargazi G (2019) Application of response surface methodology for optimization of metal–organic framework based pipette-tip solid phase extraction of organic dyes from seawater and their determination with HPLC. BMC Chem 13(1):1–10

    CAS  Google Scholar 

  3. Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2:52–80

    CAS  Google Scholar 

  4. Liu T-F, Feng D, Chen Y-P, Zou L, Bosch M, Yuan S, Wei Z, Fordham S, Wang K, Zhou H-C (2015) Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J Am Chem Soc 137:413–419

    CAS  PubMed  Google Scholar 

  5. Szczęśniak B, Choma J, Jaroniec M (2018) Gas adsorption properties of hybrid graphene-MOF materials. J Colloid Interface Sci 514:801–813

    PubMed  Google Scholar 

  6. Yang H-M, Xian L, Song X-L, Yang T-L, Liang Z-H, Fan C-M (2015) In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans Nonferrous Met Soc China 25:3987–3994

    CAS  Google Scholar 

  7. McKinstry C, Cathcart RJ, Cussen EJ, Fletcher AJ, Patwardhan SV, Sefcik J (2016) Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem Eng J 285:718–725

    CAS  Google Scholar 

  8. Sun S, Huang M, Wang P, Lu M (2019) Controllable hydrothermal synthesis of Ni/Co MOF as hybrid advanced electrode materials for supercapacitor. J Electrochem Soc 166:A1799

    CAS  Google Scholar 

  9. Chen C, Feng X, Zhu Q, Dong R, Yang R, Cheng Y, He C (2019) Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg Chem 58:2717–2728

    CAS  PubMed  Google Scholar 

  10. Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176

    CAS  PubMed  Google Scholar 

  11. Vaitsis C, Sourkouni G, Argirusis C (2019) Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason Sonochem 52:106–119

    CAS  PubMed  Google Scholar 

  12. Sargazi G, Afzali D, Mostafavi A, Kazemian H (2020) A novel composite derived from a metal organic framework immobilized within electrospun nanofibrous polymers: an efficient methane adsorbent. Appl Organomet Chem 34:e5448

    CAS  Google Scholar 

  13. Abazari R, Mahjoub AR, Molaie S, Ghaffarifar F, Ghasemi E, Slawin AM, Carpenter-Warren CL (2018) The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@ bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions. Ultrason Sonochem 43:248–261

    CAS  PubMed  Google Scholar 

  14. Ding M, Cai X, Jiang H-L (2019) Improving MOF stability: approaches and applications. Chem Sci 10:10209–10230

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maliha M, Herdman M, Brammananth R, McDonald M, Coppel R, Werrett M, Andrews P, Batchelor W (2020) Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications. J Clean Prod 246:119016

    CAS  Google Scholar 

  16. Kong X, Zhu H, Chen C, Huang G, Chen Q (2017) Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem Phys Lett 684:148–152

    CAS  Google Scholar 

  17. Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ (2020) Antioxidants for female subfertility. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007807.pub4/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gulzar M, Masjuki H, Kalam M, Varman M, Zulkifli N, Mufti R, Zahid R (2016) Tribological performance of nanoparticles as lubricating oil additives. J Nanopart Res 18:223

    Google Scholar 

  19. Subhan MA, Jhuma SS, Saha PC, Alam M, Asiri AM, Al-Mamun M, Attia SA, Emon TH, Azad AK, Rahman MM (2019) Efficient selective 4-aminophenol sensing and antibacterial activity of ternary Ag2O3SnO2Cr2O3 nanoparticles. New J Chem 43:10352–10365

    CAS  Google Scholar 

  20. Li Z, Liu Y, Yin P, Peng Y, Luo J, Xie S, Pu H (2021) Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. Int J Mech Sci 198:106363‏

    Google Scholar 

  21. Dou N, Zhang S, Qu J (2019) Simultaneous detection of acetaminophen and 4-aminophenol with an electrochemical sensor based on silver–palladium bimetal nanoparticles and reduced graphene oxide. RSC Adv 9:31440–31446

    CAS  Google Scholar 

  22. Chandran K, Goswami S, Sharma-Walia N (2016) Implications of a peroxisome proliferator-activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget 7:15577

    PubMed  Google Scholar 

  23. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108

    CAS  Google Scholar 

  24. Roberts E, Nunes VD, Buckner S, Latchem S, Constanti M, Miller P, Doherty M, Zhang W, Birrell F, Porcheret M (2016) Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis 75:552–559

    CAS  PubMed  Google Scholar 

  25. Shahbakhsh M, Noroozifar M (2018) Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds. Biosens Bioelectron 102:439–448

    CAS  PubMed  Google Scholar 

  26. Bhattacharjee T, Bhattacharjee S, Choudhuri D (2016) Hepatotoxic and nephrotoxic effects of chronic low dose exposure to a mixture of heavy metals-lead, cadmium and arsenic. Int J Pharm Chem Biol Sci 6:39–47

    CAS  Google Scholar 

  27. Rattanarat P, Suea-Ngam A, Ruecha N, Siangproh W, Henry CS, Srisa-Art M, Chailapakul O (2016) Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol. Anal Chim Acta 925:51–60

    CAS  PubMed  Google Scholar 

  28. Aristov N, Habekost A (2015) Cyclic voltammetry-A versatile electrochemical method investigating electron transfer processes, World. J Chem Educ 3:115–119

    CAS  Google Scholar 

  29. Fan Y, Liu J-H, Yang C-P, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens Actuators B Chem 157:669–674

    CAS  Google Scholar 

  30. Noguera J, Jiménez-Cabas J, Álvarez B, Caicedo-Ortiz J, Ruiz-Ariza J (2020) Analysis of Buñuelos growth rate using 2k factorial design. Procedia Comput Sci 177:267–275

    Google Scholar 

  31. Jin L, Pang J, Jing R, Lan Y, Wang L, Li F, Hu Q, Du H, Guo D, Wei X (2019) Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions. J Alloys Compd 788:1182–1192

    CAS  Google Scholar 

  32. Wissler M (2006) Graphite and carbon powders for electrochemical applications. J Power Sources 156:142–150

    CAS  Google Scholar 

  33. Zhao C, Xi M, Huo J, He C (2021) B-doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field. Phys Chem Chem Phys 23:23219–23224

    CAS  PubMed  Google Scholar 

  34. Wang L, Duan L, Xiao D, Wang E, Hu C (2004) Synthesis of novel copper compounds containing isonicotinic acid and/or 2,6-pyridinedicarboxylic acid: third-order nonlinear optical properties. J Coord Chem 57:1079–1087

    Google Scholar 

  35. Alshameri A, He H, Zhu J, Xi Y, Zhu R, Ma L, Tao Q (2018) Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Appl Clay Sci 159:83–93

    CAS  Google Scholar 

  36. Cheng J-Z, Tan Z-R, Xing Y-Q, Shen Z-Q, Zhang Y-J, Liu L-L, Yang K, Chen L, Liu S-Y (2021) Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J Mater Chem A 9:5787–5795

    CAS  Google Scholar 

  37. Qi L, Tang X, Wang Z, Peng X (2017) Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach, International Journal of. Min Sci Technol 27:371–377

    CAS  Google Scholar 

  38. He C, Wang H, Fu L, Huo J, Zheng Z, Zhao C, An M (2021) Principles for designing CO2 adsorption catalyst: serving thermal conductivity as the determinant for reactivity. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.09.049

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Li HA, Tian Y, Jin Z, Deng H (2018) Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective. Fuel 218:67–77

    CAS  Google Scholar 

  40. Manavalan S, Rajaji U, Chen S-M, Govindasamy M, Selvin SSP, Chen T-W, Ali MA, Al-Hemaid FM, Elshikh M (2019) Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum. Ultrason Sonochem 51:103–110

    CAS  PubMed  Google Scholar 

  41. Sun R, He C, Fu L, Huo J, Zhao C, Li X, Song Y, Wang S (2021) Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2 (111) surface: a DFT study. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.05.072

    Article  Google Scholar 

  42. Zhang E, Wang T, Yu K, Liu J, Chen W, Li A, Rong H, Lin R, Ji S, Zheng X (2019) Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J Am Chem Soc 141:16569–16573

    CAS  PubMed  Google Scholar 

  43. Shivakumara S, Penki TR, Munichandraiah N (2014) High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater Lett 131:100–103

    CAS  Google Scholar 

  44. Traiche R, Sy M, Oubouchou H, Bouchez G, Varret FO, Boukheddaden K (2017) Spatiotemporal observation and modeling of remarkable temperature scan rate effects on the thermal hysteresis in a spin-crossover single crystal. J Phys Chem C 121:11700–11708

    CAS  Google Scholar 

  45. Gao M, Liu B, Zhang X, Zhang Y, Li X, Han G (2021) Ultrathin MoS2 nanosheets anchored on carbon nanofibers as free-standing flexible anode with stable lithium storage performance. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162550

    Article  Google Scholar 

  46. Bakir M, Lawrence MA, Nelson PN, Conry RR (2016) Spectroscopic and electrochemical properties of di-2-thienyl ketone thiosemicarbazone (dtktsc): electrochemical reactions with electrophiles (H+ and CO2). Electrochim Acta 212:1010–1020

    CAS  Google Scholar 

  47. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y (2016) Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv 2:e1501602

    PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Tang Y, Zhang F, Lee CS (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6:1502588

    Google Scholar 

  49. Huo J, Fu L, Zhao C, He C (2021) Hydrogen generation of ammonia borane hydrolysis catalyzed by Fe22@ Co58 core-shell structure. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.12.059

    Article  Google Scholar 

  50. Wang Z, Lei Q, Wang Z, Yuan H, Cao L, Qin N, Lu Z, Xiao J, Liu J (2020) In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chem Eng J 395:125180

    CAS  Google Scholar 

  51. Deng W, Xu K, Xiong Z, Chaiwat W, Wang X, Su S, Hu S, Qiu J, Wang Y, Xiang J (2019) Evolution of aromatic structures during the low-temperature electrochemical upgrading of bio-oil. Energy Fuels 33:11292–11301

    CAS  Google Scholar 

  52. He C, Wang J, Fu L, Zhao C, Huo J (2021) Associative vs. dissociative mechanism: electrocatalysis of nitric oxide to ammonia. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vilas-Boas Â, Valderrama P, Fontes N, Geraldo D, Bento F (2019) Evaluation of total polyphenol content of wines by means of voltammetric techniques: cyclic voltammetry vs differential pulse voltammetry. Food Chem 276:719–725

    CAS  PubMed  Google Scholar 

  54. Jaiswal N, Tiwari I (2021) Sulphur nanodots decorated graphene oxide nanocomposite for electrochemical determination of norepinephrine in presence and absence of 4-aminophenol, acetaminophen and tryptophan. J Electroanal Chem 881:114956

    CAS  Google Scholar 

  55. Dou N, Qu J (2021) Rapid synthesis of a hybrid of rGO/AuNPs/MWCNTs for sensitive sensing of 4-aminophenol and acetaminophen simultaneously. Anal Bioanal Chem 413:813–820

    CAS  PubMed  Google Scholar 

  56. Niu X, Bo X, Guo L (2021) Ultrasensitive simultaneous voltammetric determination of 4-aminophenol and acetaminophen based on bimetallic MOF-derived nitrogen-doped carbon coated CoNi alloy. Anal Chim Acta 1145:37–45

    CAS  PubMed  Google Scholar 

  57. Rahman MM, Alam M, Asiri AM, Awual MR (2017) Fabrication of 4-aminophenol sensor based on hydrothermally prepared ZnO/Yb2O3 nanosheets. New J Chem 41:9159–9169

    CAS  Google Scholar 

  58. Nemakal M, Aralekallu S, Mohammed I, Pari M, Reddy KV, Sannegowda LK (2019) Nanomolar detection of 4-aminophenol using amperometric sensor based on a novel phthalocyanine. Electrochim Acta 318:342–353

    CAS  Google Scholar 

  59. Qian J, Zhang D, Liu L, Yi Y, Fiston MN, Kingsford OJ, Zhu G (2018) Carbon spheres wrapped with molybdenum disulfide nanostructure for sensitive electrochemical sensing of 4-aminophenol. J Electrochem Soc 165:B491

    CAS  Google Scholar 

  60. Wang H, Zhang S, Li S, Qu J (2018) Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta 178:188–194

    CAS  PubMed  Google Scholar 

  61. Shen Y, Yan H, Guo H, Long Y, Li W (2020) Defect-rich hexagonal boron nitride for the simultaneous determination of 4-aminophenol and phenol. Sens Actuators B: Chem 303:127248

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Saravani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, A., Saravani, H., Rezvani, A. et al. A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. J Appl Electrochem 52, 709–728 (2022). https://doi.org/10.1007/s10800-021-01664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01664-9

Keywords

Navigation