Skip to main content
Log in

A scalable approach for synthesizing olivine structured LiMn1−xCoxPO4/C high-voltage cathodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Olivine based cathodes with a chemical formula of LiMn1−xMxPO4 (where M = Fe, Ni, Co…) are considered as a potential candidate with their viability of high voltage applications, improved stability against various battery components and ambient conditions. However, the technology for scaling up the material synthesis remains a challenge. Solution combustion method stood forward among the other synthesis methods since it is possible to synthesize large quantities of materials with improved homogeneity and repeatability. In this study, olivine based LiMn1−xCoxPO4@C cathode materials were synthesized by a modified solution combustion method (SC) using glycine as fuel source, and starch as an additional carbon source. X-ray diffraction characterization of all samples suggested a highly crystallized orthorhombic olivine structure. In addition, it confirmed that Co2+ substitutes proportionately the transition metal Mn2+ without structural changes. Electron microscopy and Raman results pointed out the nanometer sized particles with a limited agglomeration and very thin carbon coating was successfully done. Electrochemical results suggested that Co-doping can improves cycling and high-rate capability of the pristine LiMnPO4/C material. Among all doped samples, LiMn0.99Co0.01PO4/C exhibited the best rate capability and cycling stability and the highest initial discharge capacity of 157 mAhg−1 at C/20, with a remarkable coulombic efficiency of about 98.1%, which is higher compared to that of the pristine sample LiMnPO4/C (80.38%). As a potential impact; this work reveals structure–property-process relationships for developing high-voltage cathodes by SC method targeted the best performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  3. Guo X, Wang M, Huang X et al (2013) Direct evidence of antisite defect in LiFe0.5Mn0.5PO4 via atomic-level HAADF-EELS. J Mater Chem A 8:2395–2404. https://doi.org/10.1039/xxxxxx

    Article  Google Scholar 

  4. Li S, Liu X, Liu G et al (2017) Highly enhanced low-temperature performances of LiFePO4/C cathode materials prepared by polyol route for lithium-ion batteries. Ionics 23:19–26. https://doi.org/10.1007/s11581-016-1818-7

    Article  CAS  Google Scholar 

  5. Moskon J, Pivko M, Jerman I et al (2016) Cycling stability and degradation mechanism of LiMnPO4 based electrodes. J Power Sources 303:97–108. https://doi.org/10.1016/j.jpowsour.2015.10.094

    Article  CAS  Google Scholar 

  6. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. https://doi.org/10.1684/agr.2014.0700

    Article  CAS  Google Scholar 

  7. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223. https://doi.org/10.1039/c0ee00713g

    Article  CAS  Google Scholar 

  8. Zong J, Liu X (2014) Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochim Acta 116:9–18. https://doi.org/10.1016/j.electacta.2013.10.176

    Article  CAS  Google Scholar 

  9. Yonemura M, Yamada A, Takei Y et al (2004) Comparative kinetic study of olivine Li[sub x]MPO[sub 4] (M = Fe, Mn). J Electrochem Soc 151:A1352. https://doi.org/10.1149/1.1773731

    Article  CAS  Google Scholar 

  10. Liu T, Cao F, Ren L et al (2017) A theoretical study of different carbon coatings effect on the depolarization effect and electrochemical performance of LiFePO4 cathode. J Electroanal Chem 807:52–58. https://doi.org/10.1016/j.jelechem.2017.11.021

    Article  CAS  Google Scholar 

  11. Deng S, Wang H, Liu H et al (2014) Research progress in improving the rate performance of LiFePO4 cathode materials. Nano-Micro Lett 6:209–226. https://doi.org/10.1007/BF03353785

    Article  Google Scholar 

  12. Noerochim L, Yurwendra AO, Susanti D (2016) Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery. Ionics 22:341–346. https://doi.org/10.1007/s11581-015-1560-6

    Article  CAS  Google Scholar 

  13. Liu H, Luo S, Yan S et al (2019) A novel and low-cost iron source for synthesizing Cl-doped LiFePO4/C cathode materials for lithium-ion batteries. J Electroanal Chem 850:113434. https://doi.org/10.1016/j.jelechem.2019.113434

    Article  CAS  Google Scholar 

  14. Sukkabot W (2020) Effect of transition metals doping on the structural and electronic properties of LiMnPO4: spin density functional investigation. Phys Scr. https://doi.org/10.1088/1402-4896/ab6aff

    Article  Google Scholar 

  15. Minakshi M, Kandhasamy S (2012) Utilizing active multiple dopants (Co and Ni) in olivine LiMnPO 4. Curr Opin Solid State Mater Sci 16:163–167. https://doi.org/10.1016/j.cossms.2012.03.004

    Article  CAS  Google Scholar 

  16. EL Khalfaouy R, Turan S, Dermenci KB et al (2019) Nickel-substituted LiMnPO4/C olivine cathode material: combustion synthesis, characterization and electrochemical performances. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.05.336

    Article  Google Scholar 

  17. Ruffo R, Mari CM, Morazzoni F et al (2007) Electrical and electrochemical behaviour of several LiFe x Co1−xPO4 solid solutions as cathode materials for lithium ion batteries. Ionics. https://doi.org/10.1007/s11581-007-0139-2

    Article  Google Scholar 

  18. Nytén A, Thomas JO (2006) A neutron powder diffraction study of LiCoxFe1−xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ion 177:1327–1330. https://doi.org/10.1016/j.ssi.2006.05.019

    Article  CAS  Google Scholar 

  19. Thomas LE, Exarhos GJ (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12

    Article  Google Scholar 

  20. Doeff MM, Wilcox JD, Yu R (2008) Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Solid State Electrochem 12:995–1001. https://doi.org/10.1007/s10008-007-0419-9

    Article  CAS  Google Scholar 

  21. El Khalfaouy R, Addaou A, Laajeb A, Lahsini A (2019) Solution combustion synthesis of LiMnPO4/C cathode material: the effect of four fuel sources on the electrochemical performances. Int J Hydrog Energy 44:18272–18282. https://doi.org/10.1016/j.ijhydene.2019.05.129

    Article  CAS  Google Scholar 

  22. El Khalfaouy R, Addaou A, Laajeb A, Lahsini A (2018) Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.10.161

    Article  Google Scholar 

  23. Wang D, Wang Z, Huang X, Chen L (2005) Continuous solid solutions LiFe1−xCoxPO4 and its electrochemical performance. J Power Sources 146:580–583. https://doi.org/10.1016/j.jpowsour.2005.03.049

    Article  CAS  Google Scholar 

  24. Taniguchi I, Doan TNL, Shao B (2011) Synthesis and electrochemical characterization of LiCoxMn1−xPO4/C nanocomposites. Electrochim Acta 56:7680–7685. https://doi.org/10.1016/j.electacta.2011.06.055

    Article  CAS  Google Scholar 

  25. Wang R, Zheng J, Feng X et al (2020) Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries. J Solid State Electrochem 24:511–519. https://doi.org/10.1007/s10008-019-04485-1

    Article  CAS  Google Scholar 

  26. Sronsri C, Noisong P, Danvirutai C (2016) Synthesis, characterization and vibrational spectroscopic study of Co, Mg co-doped LiMnPO4. Spectrochim Acta Part A Mol Biomol Spectrosc 153:436–444. https://doi.org/10.1016/j.saa.2015.08.046

    Article  CAS  Google Scholar 

  27. Reddy AJ, Kokila MK, Nagabhushana H et al (2011) Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J Alloys Compd 509:5349–5355. https://doi.org/10.1016/j.jallcom.2011.02.043

    Article  CAS  Google Scholar 

  28. Markevich E, Sharabi R, Haik O et al (2011) Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J Power Sources 196:6433–6439. https://doi.org/10.1016/j.jpowsour.2011.03.059

    Article  CAS  Google Scholar 

  29. Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319. https://doi.org/10.1021/Cr800344k

    Article  CAS  PubMed  Google Scholar 

  30. Prakasha KR, ASP (2015) Time and energy conserving solution combustion synthesis of nano Li1.2Ni0.13Mn0.54Co0.13O2 cathode material and its performance in Li-ion batteries. RSC Adv. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  31. Yang G, Ni H, Liu H et al (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe Co, Gd). J Power Sources 196:4747–4755. https://doi.org/10.1016/j.jpowsour.2011.01.064

    Article  CAS  Google Scholar 

  32. Yun YJ, Wu M, Kim JK et al (2015) Morphology effect on enhanced Li+-ion storage performance for Ni2+/3+ and/or Co2+/3+ doped LiMnPO4 cathode nanoparticles. J Nanomater. https://doi.org/10.1155/2015/970856

    Article  Google Scholar 

  33. Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:1456–1460. https://doi.org/10.1149/1.1781411

    Article  CAS  Google Scholar 

  34. Wolfenstine J, Allen J (2004) LiNiPO4—LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153. https://doi.org/10.1016/j.jpowsour.2004.05.017

    Article  CAS  Google Scholar 

  35. Zhang J, Luo S, Chang L et al (2016) In-situ growth of LiMnPO4 on porous LiAlO2 nanoplates substrates from AAO synthesized by hydrothermal reaction with improved electrochemical performance. Electrochim Acta 193:16–23. https://doi.org/10.1016/j.electacta.2016.02.018

    Article  CAS  Google Scholar 

  36. Pignanelli F, Romero M, Mombrú D et al (2019) Insights of cobalt doping on carbon-coated LiFePO4 olivine nanoparticles prepared by citric acid combustion route as cathodes for lithium batteries. Ionics. https://doi.org/10.1007/s11581-019-02908-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Ismael SAADOUNE from LCME/Cadi Ayyad University for his supports and collaboration.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouan El-Khalfaouy.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khalfaouy, R., Turan, S., Rodriguez, M.A. et al. A scalable approach for synthesizing olivine structured LiMn1−xCoxPO4/C high-voltage cathodes. J Appl Electrochem 51, 681–689 (2021). https://doi.org/10.1007/s10800-020-01528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01528-8

Keywords

Navigation