Skip to main content

Advertisement

Log in

Doped olivine LiMPO4 (M = Mn/Ni) derivatives as potential cathode materials for Lithium-ion batteries: a mini review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Olivine LiMPO4 (M = Mn, Ni) cathode materials are being widely explored as potential cathode materials for lithium-ion batteries due to its good structural properties, high potential, and specific capacity reaching ~ 170 mAh g−1. Nevertheless, these cathode materials suffer poor electronic and ionic conductivity, stumbling its application in electrochemical devices. Thus, phospho-olivine cathodes research and development are continuously being studied directly proportional to its advanced applications. Among the various modifications to overcome the deficiency, this mini review explains the doping technique in LiMPO4 (M = Mn, Ni) cathode materials. Consequently, enhanced performances are discussed based on physical and electrochemical characteristics as well as a scalable application route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chen Y, Kang Y, Zhao Y et al (2021) A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 59:83–99. https://doi.org/10.1016/j.jechem.2020.10.017

    Article  CAS  Google Scholar 

  2. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295. https://doi.org/10.1039/C1EE01388B

    Article  CAS  Google Scholar 

  3. Jyoti J, Singh BP, Tripathi SK (2021) Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. J Energy Storage 43:103112. https://doi.org/10.1016/j.est.2021.103112

    Article  Google Scholar 

  4. Lu K, Zhao C, Jiang Y (2021) Research progress of cathode materials for lithium-ion batteries. E3S Web Conf 233:01020. https://doi.org/10.1051/e3sconf/202123301020

  5. Zaghib K, Guerfi A, Hovington P et al (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369. https://doi.org/10.1016/j.jpowsour.2012.12.095

    Article  CAS  Google Scholar 

  6. Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2013) LiMnPO4 – a next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539. https://doi.org/10.1039/c2ta01393b

    Article  CAS  Google Scholar 

  7. Wani TA, Suresh G (2021) A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance. J Energy Storage 44:103307. https://doi.org/10.1016/j.est.2021.103307

    Article  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  9. Korona KP, Papierska J, Kamińska M et al (2011) Raman measurements of temperature dependencies of phonons in LiMnPO4. Mater Chem Phys 127:391–396. https://doi.org/10.1016/j.matchemphys.2011.02.027

    Article  CAS  Google Scholar 

  10. Tolganbek N, Yerkinbekova Y, Kalybekkyzy S et al (2021) Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review. J Alloys Compd 882:160774. https://doi.org/10.1016/j.jallcom.2021.160774

    Article  CAS  Google Scholar 

  11. Ragupathi V, Panigrahi P, Nagarajan GS (2019) Enhanced electrochemical performance of nanopyramid-like LiMnPO4/C cathode for lithium–ion batteries. Appl Surf Sci 495:143541. https://doi.org/10.1016/j.apsusc.2019.143541

    Article  CAS  Google Scholar 

  12. Ling J, Karuppiah C, Krishnan SG et al (2021) Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review. Energy Fuels 35:10428–10450. https://doi.org/10.1021/acs.energyfuels.1c01102

    Article  CAS  Google Scholar 

  13. Zhang J, Luo SH, Sui LL et al (2021) Preparation of neodymium-doped LiMnPO4/C cathode by sol-gel method with excellent electrochemical performance for lithium-ion batteries. Int J Energy Res 45:10590–10598. https://doi.org/10.1002/er.6546

    Article  CAS  Google Scholar 

  14. Zhu C, Wu Z, Xie J et al (2018) Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode. J Mater Sci Technol 34:1544–1549. https://doi.org/10.1016/j.jmst.2018.04.017

    Article  CAS  Google Scholar 

  15. Zhang Y, Pan Y, Liu J et al (2015) Synthesis and electrochemical studies of carbon-modified LiNiPO4 as the cathode material of Li-ion batteries. Chem Res Chinese Univ 31:117–122. https://doi.org/10.1007/s40242-015-4261-9

    Article  CAS  Google Scholar 

  16. Pavithra S, Priya A, Jayachandran M et al (2021) Influence of aloe-vera gel mediated CuO coated LiNiPO4 cathode material in rechargeable battery applications. Inorg Chem Commun 125:108459. https://doi.org/10.1016/j.inoche.2021.108459

    Article  CAS  Google Scholar 

  17. Chang L, Bi X, Luo S et al (2021) Insight into structural and electrochemical properties of Mg-doped LiMnPO4/C cathode materials with first-principles calculation and experimental verification. Int J Energy Res 45:20715–20728. https://doi.org/10.1002/er.7135

    Article  CAS  Google Scholar 

  18. Di Lecce D, Hu T, Hassoun J (2017) Electrochemical features of LiMnPO4 olivine prepared by sol-gel pathway. J Alloys Compd 693:730–737. https://doi.org/10.1016/j.jallcom.2016.09.193

    Article  CAS  Google Scholar 

  19. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B - Condens Matter Mater Phys 83:1–7. https://doi.org/10.1103/PhysRevB.83.075112

    Article  CAS  Google Scholar 

  20. Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatshefte fur Chemie 145:385–404. https://doi.org/10.1007/s00706-013-1134-0

    Article  CAS  Google Scholar 

  21. Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatsh Chem 145:385–404. https://doi.org/10.1007/s00706-013-1134-0

    Article  CAS  Google Scholar 

  22. Michalska M, Lipińska L, Sikora A et al (2015) Structural and morphological studies of manganese-based cathode materials for lithium ion batteries. J Alloys Compd 632:256–262. https://doi.org/10.1016/j.jallcom.2014.12.266

    Article  CAS  Google Scholar 

  23. El Khalfaouy R, Addaou A, Laajeb A, Lahsini A (2019) Solution combustion synthesis of LiMnPO4/C cathode material: the effect of four fuel sources on the electrochemical performances. Int J Hydrogen Energy 44:18272–18282. https://doi.org/10.1016/j.ijhydene.2019.05.129

    Article  CAS  Google Scholar 

  24. Kumar PR, Venkateswarlu M, Misra M et al (2013) Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods. Ionics (Kiel) 19:461–469. https://doi.org/10.1007/s11581-012-0778-9

    Article  CAS  Google Scholar 

  25. Long Y, Zhang Z, Wu Z et al (2017) Microwave-assisted polyol synthesis of LiMnPO4/C and its use as a cathode material in lithium-ion batteries. Particuology 33:42–49. https://doi.org/10.1016/j.partic.2016.10.006

    Article  CAS  Google Scholar 

  26. Liu J, Liu X, Huang T, Yu A (2013) Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. J Power Sources 229:203–209. https://doi.org/10.1016/j.jpowsour.2012.11.093

    Article  CAS  Google Scholar 

  27. Li L, Lu J, Chen L, Xu H, Yang J, Qian Y (2013) Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites. RSC Adv 4:6847–6852. https://doi.org/10.1039/c3ra22862b

    Article  CAS  Google Scholar 

  28. Li J, Luo S, Wang Q et al (2019) Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode. J Electrochem Soc 166:A118–A124. https://doi.org/10.1149/2.0401902jes

    Article  CAS  Google Scholar 

  29. Rajammal K, Sivakumar D, Duraisamy N et al (2016) Enhanced electrochemical properties of ZnO-coated LiMnPO4 cathode materials for lithium ion batteries. Ionics 22:1551–1556. https://doi.org/10.1007/s11581-016-1685-2

    Article  CAS  Google Scholar 

  30. Fang H, Yi H, Hu C et al (2012) Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochim Acta 71:266–269. https://doi.org/10.1016/j.electacta.2012.03.160

    Article  CAS  Google Scholar 

  31. Li X, Liu S, Jin H et al (2014) Ionothermal synthesis and electrochemical analysis of Fe doped LiMnPO4/C composites as cathode materials for lithium-ion batteries. J Alloys Compd 614:7–12. https://doi.org/10.1016/j.jallcom.2014.06.085

    Article  CAS  Google Scholar 

  32. Sharmila V, Parthibavarman M (2021) Lithium manganese phosphate associated with MWCNT: enhanced positive electrode for lithium hybrid batteries. J Alloys Compd 858:157715. https://doi.org/10.1016/j.jallcom.2020.157715

    Article  CAS  Google Scholar 

  33. Moon S, Muralidharan P, Kim DK (2012) Carbon coating by high-energy milling and electrochemical properties of LiMnPO4 obtained in polyol process. Ceram Int 38:S471–S475. https://doi.org/10.1016/j.ceramint.2011.05.042

    Article  CAS  Google Scholar 

  34. Rajammal K, Sivakumar D, Duraisamy N et al (2017) Influences of sintering temperatures and crystallite sizes on electrochemical properties of LiNiPO4 as cathode materials via sol–gel route for lithium ion batteries. J Sol-Gel Sci Technol 83:12–18. https://doi.org/10.1007/s10971-017-4372-5

    Article  CAS  Google Scholar 

  35. Fu X, Chang K, Li B et al (2017) Low-temperature synthesis of LiMnPO4/RGO cathode material with excellent voltage platform and cycle performance. Electrochim Acta 225:272–282. https://doi.org/10.1016/j.electacta.2016.12.161

    Article  CAS  Google Scholar 

  36. Rajammal K, Sivakumar D, Duraisamy N et al (2016) Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol – gel method. J Sol-Gel Sci Technol 80:514–522. https://doi.org/10.1007/s10971-016-4111-3

    Article  Google Scholar 

  37. Zhang J, Luo S, Wang Q et al (2017) Optimized hydrothermal synthesis and electrochemical performance of LiMnPO4/C cathode materials using high specific area spherical structure Li3PO4. J Alloys Compd 701:433–438. https://doi.org/10.1016/j.jallcom.2017.01.140

    Article  CAS  Google Scholar 

  38. James Abraham J, Arro CRA, Tariq HA et al (2021) Sodium and lithium incorporated cathode materials for energy storage applications - a focused review. J Power Sources 506:230098. https://doi.org/10.1016/j.jpowsour.2021.230098

    Article  CAS  Google Scholar 

  39. Tosun SG, Uzun D, Ye S (2021) Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries : synthesis , structures , and electrochemical properties. J Solid State Electrochem 25:1271–1281. https://doi.org/10.1007/s10008-021-04906-0

  40. Palaniyandy N (2020) Recent developments on layered 3d-transtition metal oxide cathode materials for sodium-ion batteries. Curr Opin Electrochem 21:319–326. https://doi.org/10.1016/j.coelec.2020.03.023

    Article  CAS  Google Scholar 

  41. Lyu Y, Liu Y, Yu ZE et al (2019) Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain Mater Technol 21:e00098. https://doi.org/10.1016/j.susmat.2019.e00098

  42. Zhu L, Ding G, Xie L et al (2019) Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater 31:8582–8612. https://doi.org/10.1021/acs.chemmater.9b03109

    Article  CAS  Google Scholar 

  43. Zhu L, Pan C, Han Q et al (2022) The improved cycling stability and rate capability of Nb-doped NaV3O8 cathode for sodium-ion batteries. J Alloys Compd 890:161885. https://doi.org/10.1016/j.jallcom.2021.161885

    Article  CAS  Google Scholar 

  44. Zhang J, Luo SH, Ren QX et al (2020) Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery. Appl Surf Sci 530:146628. https://doi.org/10.1016/j.apsusc.2020.146628

    Article  CAS  Google Scholar 

  45. El Khalfaouy R, Addaou A, Laajeb A, Lahsini A (2019) Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries. J Alloys Compd 775:836–844. https://doi.org/10.1016/j.jallcom.2018.10.161

    Article  CAS  Google Scholar 

  46. Rajammal K, Sivakumar D, Duraisamy N et al (2017) Na-doped LiMnPO4 as an electrode material for enhanced lithium ion batteries. Bull Mater Sci 40:171–175. https://doi.org/10.1007/s12034-017-1365-5

    Article  CAS  Google Scholar 

  47. Prabu M, Selvasekarapandian S, Kulkarni AR et al (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207. https://doi.org/10.1007/s11581-011-0535-5

    Article  CAS  Google Scholar 

  48. Yang H, Fu C, Sun Y et al (2020) Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon N Y 158:102–109. https://doi.org/10.1016/j.carbon.2019.11.067

    Article  CAS  Google Scholar 

  49. Hong Y, Tang Z, Hong Z, Zhang Z (2014) LiMn1-xFexPO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries. J Power Sources 248:655–659. https://doi.org/10.1016/j.jpowsour.2013.09.123

    Article  CAS  Google Scholar 

  50. Yang W, Bi Y, Qin Y et al (2015) LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries. J Power Sources 275:785–791. https://doi.org/10.1016/j.jpowsour.2014.11.063

    Article  CAS  Google Scholar 

  51. Liao L, Wang H, Guo H et al (2015) Facile solvothermal synthesis of ultrathin LiFexMn1-xPO4 nanoplates as advanced cathodes with long cycle life and superior rate capability. J Mater Chem A Mater Energ Sustain 3:19368–19375. https://doi.org/10.1039/C5TA05358G

    Article  CAS  Google Scholar 

  52. Xu S, Lv X-Y, Wu Z et al (2017) Synthesis of porous-hollow LiMn0.85Fe0.15PO4/C microspheres as a cathode material for lithium-ion batteries. Powder Technol 308:94–100. https://doi.org/10.1016/j.powtec.2016.12.002

    Article  CAS  Google Scholar 

  53. Zou B, Yu R, Deng M et al (2016) Solvothermal synthesized LiMn1-xFexPO4@C nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. RSC Adv 6:52271–52278. https://doi.org/10.1039/C6RA12472K

    Article  CAS  Google Scholar 

  54. Ruan T, Wang Bo, Wang F, Song R, Fan Jin Yu, Zhou DW, SD, (2019) Stabilizing the structure of LiMn0.5Fe0.5PO4 via formation of concentration-gradient hollow spheres with Fe-rich surfaces. Nanoscale 11:3933–3944. https://doi.org/10.1039/b000000x

    Article  PubMed  Google Scholar 

  55. Hu L, Qiu B, Xia Y et al (2014) Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. J Power Sources 248:246–252. https://doi.org/10.1016/j.jpowsour.2013.09.048

    Article  CAS  Google Scholar 

  56. Lei Z, Naveed A, Lei J et al (2017) High performance nano-sized LiMn1-xFexPO4 cathode materials for advanced lithium-ion batteries. RSC Adv 7:43708–43715. https://doi.org/10.1039/C7RA08993G

    Article  CAS  Google Scholar 

  57. Oukahou S, Elomrani A, Maymoun M et al (2022) Investigation of LiMn1-xMxPO4 (M = Ni, Fe) as cathode materials for Li-ion batteries using density functional theory. Comput Mater Sci 202:111006. https://doi.org/10.1016/j.commatsci.2021.111006

  58. Gan Y, Chen C, Liu J et al (2015) Enhancing the performance of LiMnPO4/C composites through Cr doping. J Alloys Compd 620:350–357. https://doi.org/10.1016/j.jallcom.2014.09.160

    Article  CAS  Google Scholar 

  59. Bibi S, Khan A, Khan S et al (2022) Synthesis of Cr doped LiMnPO4 cathode materials and investigation of their dielectric properties. Int J Energy Res 46:810–821. https://doi.org/10.1002/er.7205

    Article  CAS  Google Scholar 

  60. Dai E, Fang H, Yang B et al (2015) Synthesis of vanadium doped LiMnPO4 by an improved solid-state method. Ceram Int 41:8171–8176. https://doi.org/10.1016/j.ceramint.2015.03.035

    Article  CAS  Google Scholar 

  61. Vasquez FA, Calderón JA (2019) Vanadium doping of LiMnPO4 cathode material : correlation between changes in the material lattice and the enhancement of the electrochemical performance. Electrochim Acta 325:1–10. https://doi.org/10.1016/j.electacta.2019.134930

    Article  CAS  Google Scholar 

  62. Huang Q, Wu Z, Su J et al (2016) Synthesis and electrochemical performance of Ti – Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram Int 42:11348–11354. https://doi.org/10.1016/j.ceramint.2016.04.057

    Article  CAS  Google Scholar 

  63. Khalfaouy ELR, Turan S, Dermenci KB et al (2019) Nickel-substituted LiMnPO4/C olivine cathode material: combustion synthesis, characterization and electrochemical performances. Ceram Int 45:17688–17695. https://doi.org/10.1016/j.ceramint.2019.05.336

    Article  CAS  Google Scholar 

  64. El Khalfaouy R, Turan S, Rodriguez MA et al (2020) Solution combustion synthesis and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batteries. J Rare Earths 38:976–982. https://doi.org/10.1016/j.jre.2019.06.004

    Article  CAS  Google Scholar 

  65. Zhang J, Luo S, Wang Q et al (2017) Yttrium substituting in Mn site to improve electrochemical kinetics activity of sol-gel synthesized LiMnPO4/C as cathode for lithium ion battery. J Solid State Electrochem 21:3189–3194. https://doi.org/10.1007/s10008-017-3662-8

    Article  CAS  Google Scholar 

  66. Wang R, Zheng J, Feng X et al (2020) Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries. J Solid State Electrochem 24:511–519. https://doi.org/10.1007/s10008-019-04485-1

    Article  CAS  Google Scholar 

  67. El-Khalfaouy R, Turan S, Rodriguez MA et al (2021) A scalable approach for synthesizing olivine structured LiMn1−xCoxPO4/C high-voltage cathodes. J Appl Electrochem 51:681–689. https://doi.org/10.1007/s10800-020-01528-8

    Article  CAS  Google Scholar 

  68. Liu J, Wang J, Chen Q, Zhong S (2021) Mg-doped LiMnPO4/C cathode materials for enhanced lithium storage performance. Mater Technol 36:153–158. https://doi.org/10.1080/10667857.2020.1735076

    Article  CAS  Google Scholar 

  69. Wang L, Zhang H, Liu Q et al (2018) Modifying high-voltage olivine-type LiMnPO4 cathode via Mg-substitution in high-orientation crystal. ACS Appl Energy Mater 1:5928–5935. https://doi.org/10.1021/acsaem.8b00923

    Article  CAS  Google Scholar 

  70. Nageswara Rao B, Narsimulu D, Satyanarayana N (2022) Effect of Mg doping on the electrical, dielectric and relaxation properties of LiMnPO4 nanoparticles. Indian J Phys 96:1017–1023. https://doi.org/10.1007/s12648-021-02023-2

    Article  CAS  Google Scholar 

  71. Luo S, hua, Sun Y, Bao S, et al (2019) Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability. J Electroanal Chem 832:196–203. https://doi.org/10.1016/j.jelechem.2018.10.062

    Article  CAS  Google Scholar 

  72. Rajammal K, Sivakumar D, Duraisamy N et al (2016) Structural and electrochemical characterizations of LiMn1-xAl0.5xCu0.5xPO4 (x=0.0, 0.1, 0.2) cathode materials for lithium ion batteries. Mater Lett 173:131–135. https://doi.org/10.1016/j.matlet.2016.03.046

    Article  CAS  Google Scholar 

  73. Chen L, Yuan Y, Feng X, Li M (2012) Enhanced electrochemical properties of LiFe1-xMnxPO4/C composites synthesized from FePO4.2H2O nanocrystallites. J Power Sources 214:344–350. https://doi.org/10.1016/j.jpowsour.2012.04.089

  74. Duan J, Hu G, Cao Y et al (2016) Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics 22:609–619. https://doi.org/10.1007/s11581-015-1582-0

    Article  CAS  Google Scholar 

  75. Bi X, Chang L, Luo S et al (2022) Based on first-principles calculation, study on the synthesis, and performance of Fe–Ni co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ionics 28:577–591. https://doi.org/10.1007/s11581-021-04344-y

    Article  CAS  Google Scholar 

  76. Xiang W, Zhong Y, Tang Y et al (2015) Improving the electrochemical kinetics of lithium manganese phosphate via co-substitution with iron and cobalt. J Alloys Compd 635:180–187. https://doi.org/10.1016/j.jallcom.2015.02.049

    Article  CAS  Google Scholar 

  77. Yi H, Hu C, He X, Xu H (2015) Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics (Kiel) 21:667–671. https://doi.org/10.1007/s11581-014-1238-5

    Article  CAS  Google Scholar 

  78. Devi LS, Babu KV, Madhavilatha B et al (2018) Structural and electrochemical characterizations of nanostructured olivine LiNi1-xCoxPO4 (x=0 and 0.5) cathode materials for lithium-ion batteries. South African J Chem Eng 25:42–47. https://doi.org/10.1016/j.sajce.2017.12.003

    Article  Google Scholar 

  79. Vijaya Babu K, Seeta Devi L, Veeraiah V, Anand K (2016) Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium-ion batteries. J Asian Ceram Soc 4:269–276. https://doi.org/10.1016/j.jascer.2016.05.001

    Article  Google Scholar 

  80. Karthickprabhu S, Vikraman D, Kathalingam A et al (2019) Electrochemical and cycling performance of neodymium (Nd3+) doped LiNiPO4 cathode materials for high voltage lithium-ion batteries. Mater Lett 237:224–227. https://doi.org/10.1016/j.matlet.2018.11.102

    Article  CAS  Google Scholar 

  81. Tao Y, Zhu B (2021) Yttrium ion doping effect on electrochemical performance of LiNiPO4 materials. Ionics 27:2909–2914. https://doi.org/10.1007/s11581-021-04089-8

    Article  CAS  Google Scholar 

  82. Zhang J, Luo SH, Sui LL et al (2018) Co-precipitation assisted hydrothermal method to synthesize Li0.9Na0.1Mn0.9Ni0.1PO4/C nanocomposite as cathode for lithium ion battery. J Alloys Compd 768:991–994. https://doi.org/10.1016/j.jallcom.2018.07.309

    Article  CAS  Google Scholar 

  83. Zhang J, Luo S, Ren Q et al (2021) Preparation and electrochemical performance of Na+ and Co2+ co-doped Li0.9Na0.1Mn1-xCoxPO4/C cathode material for Li-ion battery. Ionics 27:3251–3257. https://doi.org/10.1007/s11581-021-04102-0

  84. Han CC, Yao X, Tian H et al (2021) Synthesis and electrochemical behavior of Na+ and Zr4+ doped LiMnPO4/C as potential cathode material for Li-ion batteries. Int J Electrochem Sci 16:1–10. https://doi.org/10.20964/2021.07.69

    Article  CAS  Google Scholar 

  85. Hu CL, Yi HH, Wang FX et al (2014) Boron doping at P-site to improve electrochemical performance of LiMnPO4 as cathode for lithium ion battery. J Power Sources 255:355–359. https://doi.org/10.1016/j.jpowsour.2013.12.040

    Article  CAS  Google Scholar 

  86. Clemens O, Bauer M, Haberkorn R et al (2012) Synthesis and characterization of vanadium-doped LiMnPO4- compounds: LiMn(PO4)x(VO4)1–x (0.8 ≤ x ≤ 1.0). Chem Mater 24:4717–4724. https://doi.org/10.1021/cm303005d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. Rajammal wrote the original draft. All authors participated in writing, reviewing, and editing.

Corresponding author

Correspondence to D. Sivakumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajammal, K., Ramesh, K., Ramesh, S. et al. Doped olivine LiMPO4 (M = Mn/Ni) derivatives as potential cathode materials for Lithium-ion batteries: a mini review. Ionics 29, 895–916 (2023). https://doi.org/10.1007/s11581-023-04894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04894-3

Keywords

Navigation