Skip to main content
Log in

Morphological transformation of electrodeposited Pt and its electrocatalytic activity towards direct formic acid fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Engineering the shape and size of platinum catalysts is crucial in determining fuel cell performance. In this study, Pt electrodeposited on carbon black-coated carbon paper at three different potentials (viz. 0.2, 0, and −0.2 vs. SHE) was evaluated for its performance in direct formic acid fuel cells (DFAFCs). The electrodeposited catalysts were analysed using SEM, XRD, and electrochemical techniques. The shape of the electrodeposited Pt transformed from globular (0.2 V) to dendritic (0 V) and to rosette-like (−0.2 V) structure by increasing the deposition potential in the cathodic direction. The change in shape could be due to the variation in the accompanying hydrogen evolution with the deposition potential in acidic electrolyte. The dendritic structure of Pt deposited at 0 V showed a higher electrochemical surface area and enhanced catalytic activity towards formic acid oxidation than the other two shapes. To study the performance of electrocatalysts in DFAFC, the anode catalyst was prepared in a new approach of layer-by-layer electrodeposition on carbon to maximize the triple phase boundary. The layered dendritic Pt generated a maximum power density of 42 mW cm−2, comparable with the commercial Pt/C catalyst (46 mW cm−2) at 70 °C for 3 M formic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barbir F, Gomez T (1996) Efficiency and economics of proton exchange membrane (PEM) fuel cells. Int J Hydrog Energy 21:891–901

    Article  CAS  Google Scholar 

  2. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100. doi:10.1007/s10008-011-1398-4

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127:162–171. doi:10.1016/j.jpowsour.2003.09.013

    Article  CAS  Google Scholar 

  4. Zhang J (2011) Recent advances in cathode electrocatalysts for PEM fuel cells. Front Energy 5:137–148. doi:10.1007/s11708-011-0153-y

    Article  Google Scholar 

  5. Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2:1–62. doi:10.3402/nano.v2i0.5883

    Article  Google Scholar 

  6. Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3:2054–2073. doi:10.1039/c0nr00857e

    Article  CAS  Google Scholar 

  7. Grozovski V, Solla-gullón J, Climent V, Herrero E, Juan MJ (2010) Formic acid oxidation on Pt nanoparticles studied by pulsed voltammetry. J Phys Chem C 114:13802–13812

    Article  CAS  Google Scholar 

  8. Antolini E, Perez J (2011) The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. J Mater Sci 46:4435–4457. doi:10.1007/s10853-011-5499-3

    Article  CAS  Google Scholar 

  9. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735. doi:10.1126/science.1140484

    Article  CAS  Google Scholar 

  10. Thompsett D (2010) Recent developments in electrocatalyst activity and stability for proton exchange membrane fuel cells. In: Wilkinson DP, Zhang J, Hui R, Fergus J, Li X (eds) Proton exchange membrane fuel cells: materials properties and performance. CRC Press, Taylor and Francis Group, Boca Raton, pp 1–60

    Google Scholar 

  11. Singh RN, Awasthi R, Sharma CS (2014) Review: an overview of recent development of platinum- based cathode materials for direct methanol fuel cells. Int J Electrochem Sci 9:5607–5639

    Google Scholar 

  12. Lee H, Kim C, Yang S, Han JW, Kim J (2011) Shape-controlled nanocrystals for catalytic applications. Catal Surv from Asia 16:14–27. doi:10.1007/s10563-011-9130-z

    Article  Google Scholar 

  13. Li J, Ye F, Chen L, Wang T, Li J, Wang X (2009) A study on novel pulse preparation and electrocatalytic activities of Pt/C-Nafion electrodes for proton exchange membrane fuel cell. J Power Sources 186:320–327. doi:10.1016/j.jpowsour.2008.07.025

    Article  CAS  Google Scholar 

  14. Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270. doi:10.1007/s10800-010-0234-3

    Article  CAS  Google Scholar 

  15. Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition, vol 2 ed. Wiley, New York

    Book  Google Scholar 

  16. Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12. doi:10.1016/S0022-0728(03)00250-X

    Article  CAS  Google Scholar 

  17. Lu G, Zangari G (2005) Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization. J Phys Chem B 109:7998–8007

    Article  CAS  Google Scholar 

  18. Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Platinum particles electrodeposition on carbon substrates. Electrochem Commun 8:159–164. doi:10.1016/j.elecom.2005.11.003

    Article  CAS  Google Scholar 

  19. Zhang H, Jiang F, Zhou R, Du Y, Yang P, Wang C, Xu J (2011) Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. Int J Hydrog Energy 36:15052–15059. doi:10.1016/j.ijhydene.2011.08.072

    Article  CAS  Google Scholar 

  20. Tiwari JN, Pan F-M, Lin K-L (2009) Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics. New J Chem 33:1482–1485. doi:10.1039/b901534p

    Article  CAS  Google Scholar 

  21. Yao Z, Zhu M, Jiang F, Du Y, Wang C, Yang P (2012) Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J Mater Chem 22:13707–13713. doi:10.1039/c2jm31683h

    Article  CAS  Google Scholar 

  22. Maniam KK, Chetty R (2013) Electrodeposited palladium nanoflowers for electrocatalytic applications. Fuel Cells 13:1196–1204. doi:10.1002/fuce.201200162

    Article  CAS  Google Scholar 

  23. Plyasova LM, Molina IY, Gavrilov AN, Cherepanova SV, Cherstiouk OV, Rudina NA, Savinova ER, Tsirlina GA (2006) Electrodeposited platinum revisited: tuning nanostructure via the deposition potential. Electrochim Acta 51:4477–4488. doi:10.1016/j.electacta.2005.12.027

    Article  CAS  Google Scholar 

  24. Cheng TT, Gyenge EL (2009) Novel catalyst-support interaction for direct formic acid fuel cell anodes: Pd electrodeposition on surface-modified graphite felt. J Appl Electrochem 39:1925–1938. doi:10.1007/s10800-009-9901-7

    Article  CAS  Google Scholar 

  25. Wei L, Fan Y-J, Wang H-H, Tian N, Zhou Z-Y, Sun S-G (2012) Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim Acta 76:468–474. doi:10.1016/j.electacta.2012.05.063

    Article  CAS  Google Scholar 

  26. Paul RK, Mulchandani A (2013) Platinum nanoflowers decorated three-dimensional graphene–carbon nanotubes hybrid with enhanced electrocatalytic activity. J Power Sources 223:23–29. doi:10.1016/j.jpowsour.2012.08.088

    Article  Google Scholar 

  27. Maniam KK, Chetty R (2015) Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation. J Appl Electrochem 45:953–962. doi:10.1007/s10800-015-0860-x

    Article  CAS  Google Scholar 

  28. Nikolić ND, Popov KI, Pavlović LJ, Pavlović MG (2006) The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential. J Electroanal Chem 588:88–98. doi:10.1016/j.jelechem.2005.12.006

    Article  Google Scholar 

  29. Plowman BJ, Jones LA, Bhargava SK (2015) Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem Commun 51:4331–4346. doi:10.1039/C4CC06638C

    Article  CAS  Google Scholar 

  30. Ojani R, Hasheminejad E, Raoof JB (2014) Hydrogen evolution assisted electrodeposition of bimetallic 3D nano/micro-porous PtPd films and their electrocatalytic performance. Int J Hydrog Energy 39:8194–8203. doi:10.1016/j.ijhydene.2014.03.162

    Article  CAS  Google Scholar 

  31. Scharifker BR, Mostany J, Palomar-Pardavé M, González Ignacio (1999) On the theory of the potentiostatic current transient for diffusion-controlled three-dimensional electrocrystallization processes. J Electrochem Soc 146:1005–1012. doi:10.1149/1.1391713

    Article  CAS  Google Scholar 

  32. Gamburg YD, Zangari G (2011) Theory and practice of metal electrodeposition. Springer, New york

    Book  Google Scholar 

  33. Mechehoud F, Khelil A, Hakiki NE, Bubendorff J-L (2016) Potentiostatic controlled nucleation and growth modes of electrodeposited cobalt thin films on n-Si (111). Eur Phys J Appl Phys 75:30301–30311. doi:10.1051/epjap/2016160079

    Article  Google Scholar 

  34. Cherevko S, Kulyk N, Chung C-H (2012) Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying. Nanoscale 4:568–575. doi:10.1039/c1nr11503k

    Article  CAS  Google Scholar 

  35. Cherevko S, Kulyk N, Chung C-H (2012) Nanoporous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. Nanoscale 4:103–105. doi:10.1039/c1nr11316j

    Article  CAS  Google Scholar 

  36. Zhang H, Zhou W, Du Y, Yang P, Wang C (2010) One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem Commun 12:882–885. doi:10.1016/j.elecom.2010.04.011

    Article  CAS  Google Scholar 

  37. Wang D, Zhuang L, Lu J (2007) An alloying-degree-controlling step in the impregnation synthesis of PtRu/C catalysts. J Phys Chem C 111:16416–16422. doi:10.1021/jp073062l

    Article  CAS  Google Scholar 

  38. Natter H, Hempelmann R (1996) Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature, and pH. J Phys Chem 100:19525–19532. doi:10.1021/jp9617837

    Article  CAS  Google Scholar 

  39. Xu W, Du D, Lan R, Humphreys J, Miller DN, Walker M, Zucheng W, John TSI, Shanwen T (2017) Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl Catal B Environ 3:1–9. doi:10.1016/j.apcatb.2016.11.003

    Article  CAS  Google Scholar 

  40. Cuesta A, Cabello G, Osawa M, Gutiérrez C (2012) Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal 2:728–738. doi:10.1021/cs200661z

    Article  CAS  Google Scholar 

  41. Chen W, Kim J, Sun S, Chen S (2006) Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Phys Chem Chem Phys 8:2779–2786. doi:10.1039/b603045a

    Article  CAS  Google Scholar 

  42. Fleischmann CW, Johnson GK, Kuhn AT (1964) The electrochemical oxidation of formic acid on platinum. J Electrochem Soc 111:602–605. doi:10.1149/1.2426191

    Article  CAS  Google Scholar 

  43. Strasser P, Lübke M, Raspel F, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental. J Chem Phys 107:979–990. doi:10.1063/1.47445041

    Article  CAS  Google Scholar 

  44. Strasser P, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. J Chem Phys 107:991–1003. doi:10.1063/1.474450

    Article  CAS  Google Scholar 

  45. Hsu IJ, Esposito DV, Mahoney EG, Black A, Chen JG (2011) Particle shape control using pulse electrodeposition: methanol oxidation as a probe reaction on Pt dendrites and cubes. J Power Sources 196:8307–8312. doi:10.1016/j.jpowsour.2011.06.043

    Article  CAS  Google Scholar 

  46. Ghosh S, Raj CR (2015) Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: towards tuning the reaction pathway. J Chem Sci 127:949–957. doi:10.1007/s12039-015-0854-6

    Article  CAS  Google Scholar 

  47. Rezaei M, Tabaian SH (2014) The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electro-oxidation. Electrocatalysis 5:193–204. doi:10.1007/s12678-013-0181-y

    Article  CAS  Google Scholar 

  48. Cheng N, Webster RA, Pan M, Mu S, Rassaei L, Chi S, Marken F (2010) One-step growth of 3–5 nm diameter palladium electrocatalyst in a carbon nanoparticle-chitosan host and characterization for formic acid oxidation. Electrochim Acta 55:6601–6610. doi:10.1016/j.electacta.2010.06.014

    Article  CAS  Google Scholar 

  49. Zhou Z-Y, Ren J, Kang X, Song Y, Sun S-G, Chen S (2012) Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation. Phys Chem Chem Phys 14:1412–1417. doi:10.1039/c1cp23183a

    Article  CAS  Google Scholar 

  50. Zhang X, Yin H, Wang J, Chang L, Gao Y, Liu W, Tang Z (2013) Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5:8392–8397. doi:10.1039/c3nr03100d

    Article  CAS  Google Scholar 

  51. Wang W, Ji S, Wang H, Wang R (2012) Nanoporous PdNi/C electrocatalyst prepared by dealloying high-Ni-content PdNi alloy for formic acid oxidation. Fuel Cells 12:1129–1133. doi:10.1002/fuce.201200098

    Article  Google Scholar 

  52. Permyakova AA, Han B, Jensen JO, Bjerrum NJ, Horn YS (2015) Pt-Si bifunctional surfaces for CO and methanol electrooxidation. J Phys Chem C 119:8023–8031. doi:10.1021/acs.jpcc.5b00138

    Article  CAS  Google Scholar 

  53. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4:599–603. doi:10.1016/S1388-2481(02)00386-7

    Article  CAS  Google Scholar 

  54. Jeon H, Joo J, Kwon Y, Uhm S, Lee J (2010) Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells. J Power Sources 195:5929–5933. doi:10.1016/j.jpowsour.2010.03.009

    Article  CAS  Google Scholar 

  55. Abraham BG, Maniam KK, Kuniyil A, Chetty R (2016) Electrocatalytic performance of palladium dendrites deposited on titania nanotubes for formic acid oxidation. Fuel Cells 16:656–661. doi:10.1002/fuce.201600023

    Article  CAS  Google Scholar 

  56. Ma Y, Wang H, Li H, Key J, Ji S, Wang R (2014) Synthesis of ultra fine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol. RSC Adv 4:20722–20728. doi:10.1039/c4ra01973c

    Article  CAS  Google Scholar 

  57. Perez J, Paganin VA, Antolini E (2011) Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell. J Electroanal Chem 654:108–115. doi:10.1016/j.jelechem.2011.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Indian Institute of Technology (IIT) Madras for the financial support. We acknowledge Department of Science and Technology, DST-FIST for providing the instrumentation facility to the Department of Chemical Engineering, IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuram Chetty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, V., Chetty, R. Morphological transformation of electrodeposited Pt and its electrocatalytic activity towards direct formic acid fuel cells. J Appl Electrochem 47, 735–745 (2017). https://doi.org/10.1007/s10800-017-1076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1076-z

Keywords

Navigation