Skip to main content
Log in

The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Bimetallic PtGe and PtIn catalysts were prepared over Vulcan carbon (VC) and multiwall carbon nanotubes (NT) by conventional impregnation method (CI). These supports were functionalized with citric or nitric acid. The structural and electrochemical characteristics of the different functionalized supported catalysts were analyzed in order to determine the influence of the functional groups. The methods applied were temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), cyclohexane dehydrogenation reaction (CHD), and CO stripping. The functionalization treatment with citric or nitric acid eases CO oxidation to CO2, decreasing poisoning effect of CO over Pt, due to the development of oxygenated groups on support surfaces and in the nearby Ge and In. Bimetallic catalysts supported on carbons functionalized with HNO3 present increasing electrochemical active surface values, indicating a better electrochemical behavior than the corresponding monometallic catalysts. DMFC experiments show a very good behavior of PtGe catalysts, mainly for those supported on HNO3-functionalized NT, reaching a maximum power density of 80 mW cm−2. Conversely, PtIn catalysts exhibit a very poor behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Yu, Z. Xin, W. Zhang, Y. Xie, J. Wang, S. Niu, Y. Wu, L. Shao, The role of surface functionalities in fabricating supported Pd-P nanoparticles for efficient formic acid oxidation. Chem. Phys. Lett. 686, 155–160 (2017)

    Article  CAS  Google Scholar 

  2. L. Gong, Z. Yang, K. Li, J. Ge, C. Liu, W. Xing, J. Energy Chem. 27, 1618 (2018) https://doi.org/10.1016/j.jechem.2018.01.029

  3. A.S. Aricó, S. Srinivasan, V. Antonucci, Fuel Cells 1, 133 (2001)

    Article  Google Scholar 

  4. S.M.M. Ehteshamia, S.H. Chana, Electrochim. Acta 93, 334 (2013)

    Article  CAS  Google Scholar 

  5. A. Öztürk, A. B. Yurtcan, Int. J. Hydrog. Energy 43, 18559 (2018) https://doi.org/10.1016/j.ijhydene.2018.05.106

  6. A.F. Holloway, G.G. Wildgoose, R.G. Compton, L. Shao, M.L.H. Green, J. Solid State Electrochem. 12, 1337 (2008)

    Article  CAS  Google Scholar 

  7. J.P. Tessonnier, D. Rosenthal, T.W. Hansen, C. Hess, M.E. Schuster, R. Blume, F. Girgsdies, N. Pfänder, O. Timpe, D.S. Su, R. Schlögl, Carbon 47, 1779 (2009)

    Article  CAS  Google Scholar 

  8. Z. Chen, D. Higgins, Z. Chen, Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48(11), 3057–3065 (2010)

    Article  CAS  Google Scholar 

  9. L. Panchakarla, A. Govindaraj, C. Rao, Inorg. Chim. Acta 363, 4163 (2010)

    Article  CAS  Google Scholar 

  10. Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, R. O’Hayre, Energy Environ. Sci. 3, 1437 (2010)

    Article  CAS  Google Scholar 

  11. G.C. Torres, E.L. Jablonski, G.T. Baronetti, A.A. Castro, S.R. de Miguel, O.A. Scelza, D.M. Blanco, M.A. Peña Jimenez, J.L.G. Fierro, Appl. Catal. A Gen. 161, 213 (1997)

    Article  CAS  Google Scholar 

  12. I.M.J. Vilella, S.R. de Miguel, C. Salinas-Martínez de Lecea, A. Linares-Solano, O.A. Scelza, Appl. Catal. A Gen. 281(1-2), 247–258 (2005)

    Article  CAS  Google Scholar 

  13. C.K. Poh, S.H. Lim, H. Pan, J. Lin, J.Y. Lee, J. Power Sources 176, 70 (2008)

    Article  CAS  Google Scholar 

  14. M.A. Fraga, E. Jordao, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo, J. Catal. 209, 355 (2002)

    Article  CAS  Google Scholar 

  15. S.R. de Miguel, J.I. Vilella, E.L. Jablonski, O.A. Scelza, C. Salinas-Martinez de Lecea, A. Linares-Solano, Appl. Catal. A: Gen. 232, 237 (2002)

    Article  Google Scholar 

  16. N.S. Veizaga, V.I. Rodriguez, S.R. de Miguel, J. Electrochem. Soc. 164, F22 (2017)

    Article  CAS  Google Scholar 

  17. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Faraday Discuss. 125, 357 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. G. Haller, J. Catal. 216, 12 (2003)

    Article  CAS  Google Scholar 

  19. D.N. Blakely, G.A. Somorjai, J. Catal. 42, 181 (1976)

    Article  CAS  Google Scholar 

  20. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Co., Physical. Electronics (1979)

  21. J.P. Stassi, P.D. Zgolicz, V.I. Rodríguez, S.R. de Miguel, O.A. Scelza, Appl. Catal. A: Gen. 497, 58 (2015)

    Article  CAS  Google Scholar 

  22. S.A. Bocanegra, O.A. Scelza, S.R. de Miguel, Appl. Catal. A: Gen. 468, 135 (2013)

    Article  CAS  Google Scholar 

  23. N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Int. J. Hydrog. Energy 39, 8728 (2014)

    Article  CAS  Google Scholar 

  24. E.M. Crabb, M.K. Ravikumar, Electrochim. Acta 46, 1033 (2001)

    Article  CAS  Google Scholar 

  25. L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M.J. Lazaro, J. Power Sources 192, 144 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Universidad Nacional del Litoral and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia S. Veizaga.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veizaga, N.S., Rodriguez, V.I., Bruno, M. et al. The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells. Electrocatalysis 10, 125–133 (2019). https://doi.org/10.1007/s12678-018-0502-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0502-2

Keywords

Navigation