Skip to main content
Log in

Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals

  • Review Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of various nanoscale materials, such as nanoparticles, nanowires of Au, Pt, Ni Co, Fe, Ag etc., by electrodeposition techniques have been demonstrated in this article. Both potentiostatic and galvanostatic methods were employed to carry out the electrodeposition process under different potential ranges, time durations, and current densities. The electrochemical behavior of the deposited nanoparticles on various substrates was investigated by cyclic voltammetric and chronoamperometric techniques. The synthesis of mono-dispersed gold (Au) nanoparticles on indium tin oxide (ITO) coated glass, preparation of Au nanorods on nanoporous anodic alumina oxide (AAO), formation of Au nanoclusters on polypyrrole-modified glassy carbon electrode and one-step electrodeposition of nickel nanoparticle chains embedded in TiO2 etc. have been highlighted in this article. The potential applications of synthesized nanoparticles such as the role of maghemite (Fe2O3) in arsenic remediation, higher electrocatalytic activity of Ag nanoclusters for the reduction of benzyl chloride, and the role of C60 nanoparticle-doped carbon film in fabrication processes are also presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc., New York

    Book  Google Scholar 

  2. Ozin G, Arsenault A (2005) Nanochemistry: a chemistry approach to nanomaterials. Springer, New York

    Google Scholar 

  3. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  4. Kolb D, Simeone FC (2005) Electrochim Acta 50:2989

    Article  CAS  Google Scholar 

  5. Bayoumi FM, Ateya BG (2006) Electrochem Commun 8:38

    Article  CAS  Google Scholar 

  6. Lee HY, Kim SW, Lee HY (2001) Electrochem Solid State Lett 4A:19

    Article  Google Scholar 

  7. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid State Lett 5A:227

    Article  Google Scholar 

  8. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2003) Fluid Phase Equilib 210:307

    Article  CAS  Google Scholar 

  9. Fu X, Yu H, Peng F, Wang H, Qian Y (2007) Appl Catal A 321:190

    Article  CAS  Google Scholar 

  10. Spatz J, Mossmer S, Moller M (1996) Chem Eur J 2:1552

    Article  CAS  Google Scholar 

  11. Glass R, Moller M, Spatz JP (2003) Nanotechnology 14:1153

    Article  CAS  Google Scholar 

  12. Esparza R, Rosas G, Fuentes ML, Sánchez RJF, Pal U, Ascencio JA, Pérez R (2007) Mater Charact 58:694

    Article  CAS  Google Scholar 

  13. Serrano JG, Pal U (2003) Int J Hydrog Energy 28:637

    Article  Google Scholar 

  14. Yang S, Zhang T, Zhang L, Wang S, Yang Z, Ding B (2007) Colloids Surf A 296:37

    Article  CAS  Google Scholar 

  15. Lu DL, Tanaka KI (1996) J Phys Chem 100:1833

    Article  CAS  Google Scholar 

  16. Huang H, Yang X (2005) Colloids Surf A 255:11

    Article  CAS  Google Scholar 

  17. Finot MO, Braybrook GD, McDermott MT (1999) J Electroanal Chem 466:234

    Article  CAS  Google Scholar 

  18. Srinivasan V, Weidner JW (1997) J Electrochem Soc 144L:210

    Article  Google Scholar 

  19. Guo S, Wang E (2007) Anal Chim Acta 598:181

    Article  CAS  Google Scholar 

  20. Riley DR (2002) Curr Opin Colloid Interface Sci 7:186

    Article  CAS  Google Scholar 

  21. Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613

    Article  CAS  Google Scholar 

  22. El-Deab MS, Okajima T, Ohsaka T (2003) J Electrochem Soc 150:A851

    Article  CAS  Google Scholar 

  23. El-Deab MS (2009) Electrochim Acta 54:3720

    Article  CAS  Google Scholar 

  24. Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Biosens Bioelectron 24:1480

    Article  CAS  Google Scholar 

  25. Yanez SP, Pingarron JM (2005) Anal Bioanal Chem 382:884

    Article  Google Scholar 

  26. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601

    Article  CAS  Google Scholar 

  27. Wang L, Mao W, Ni D, Di J, Wu Y, Tu Y (2008) Electrochem Commun 10:673

    Article  CAS  Google Scholar 

  28. Huang CJ, Chiu PH, Wang YH, Yang CF (2006) J Colloid Interf Sci 303:430

    Article  CAS  Google Scholar 

  29. Liu YC, Chuang TC (2003) J Phys Chem B 107:12383

    Article  CAS  Google Scholar 

  30. Ting L (2007) Trans Nonferr Met Soc China 17:1343

    Article  Google Scholar 

  31. Rapecki T, Donten M, Stojek Z (2010) Electrochem Commun 12:624

    Article  CAS  Google Scholar 

  32. Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu J (2011) Ultrason Sonochem 18:231

    Article  CAS  Google Scholar 

  33. Chen G, Zhang J, Yang S (2007) Electrochem Commun 9:1053

    Article  CAS  Google Scholar 

  34. Yu CC, Liu YC, Yang KH, Li CC, Wang CC (2010) Mater Chem Phys (in press)

  35. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) Langmuir 15:701

    Article  CAS  Google Scholar 

  36. Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1992) J Phys Chem 96:7497

    Article  CAS  Google Scholar 

  37. Martin CR (1994) Science 266:1961

    Article  CAS  Google Scholar 

  38. Martin CR (1996) Chem Mater 8:1739

    Article  CAS  Google Scholar 

  39. Wang HJ, Zou CW, Yang B, Lu HB, Tian CX, Yang HJ, Li M, Liu CS, Fu DJ, Liu JR (2009) Electrochem Commun 11:2019

    Article  CAS  Google Scholar 

  40. Shingubara S, Okino O, Sayama Y, Sakaueand H, Takahagi T (1997) Jpn J Appl Phys 36:7791

    Article  CAS  Google Scholar 

  41. Motoyama M, Fukunaka Y, Sakka T, Ogataand YH, Kikuchi SE (2005) J Electroanal Chem 584:84

    Article  CAS  Google Scholar 

  42. Lin CC, Juo TJ, Chen YJ, Chiou CH, Wang HW, Liu YL (2008) Desalination 233:113

    Article  CAS  Google Scholar 

  43. Wang ZL, Gao RP, Nikoobakht B, El Sayed MA (2000) J Phys Chem B 104:5417

    Article  CAS  Google Scholar 

  44. Wang ZL, Mohamed MB, Link S, El Sayed MA (1999) Surf Sci 440:809

    Article  Google Scholar 

  45. Wang ZL (2000) J Phys Chem B 104:1153

    Article  CAS  Google Scholar 

  46. Wang JG, Tian ML, Mallouk TE, Chan MH (2004) J Phys Chem B 104:841

    Article  Google Scholar 

  47. Wang HW, Russo B, Cao GZ (2006) Nanotechnology 17:2689

    Article  CAS  Google Scholar 

  48. Huang CJ, Chiu PH, Wang YH, Yang CF, Wei FS (2007) J Colloid Interf Sci 306:56

    Article  CAS  Google Scholar 

  49. Wu B, Boland JJ (2006) J Colloid Interf Sci 303:611

    Article  CAS  Google Scholar 

  50. Lu Y, Yang M, Qu F, Shen G, Yu R (2007) Bioelectrochemistry 71:211

    Article  CAS  Google Scholar 

  51. Soleimany L, Dolati A, Ghorbani M (2010) J Electroanal Chem 645:28

    Article  CAS  Google Scholar 

  52. Li J, Lin XQ (2007) Anal Chim Acta 596:222

    Article  CAS  Google Scholar 

  53. Liu A, Zhu J, Han J, Wu H, Jiang C (2008) Electrochem Commun 10:827

    Article  CAS  Google Scholar 

  54. Yang B, Wang S, Tian S, Liu L (2009) Electrochem Commun 11:1230

    Article  CAS  Google Scholar 

  55. Rajesh B, Thampi KR, Bonard JM, Xanthopoulos N, Mathicu HJ, Viswanathan B (2003) J Phys Chem B 107:2701

    Article  CAS  Google Scholar 

  56. Liu Z, Gan LM, Hong L, Chen W, Lee JY (2005) J Power Sources 139:73

    Article  CAS  Google Scholar 

  57. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) J Phys Chem B 109:22212

    Article  CAS  Google Scholar 

  58. Tsai MC, Yeh TK, Tsai CH (2006) Electrochem Commun 8L:1445

    Article  Google Scholar 

  59. Yu P, Yan J, Zhang J, Mao L (2007) Electrochem Commun 9:1139

    Article  CAS  Google Scholar 

  60. Lu G, Zangari G (2006) Electrochim Acta 51:2531

    Article  CAS  Google Scholar 

  61. Saminathan K, Kamavaram V, Veedu V, Kannan AM (2009) Int J Hydrog Energy 34:3838

    Article  CAS  Google Scholar 

  62. Hassan HB (2009) J Fuel Chem Technol 37:23

    Google Scholar 

  63. Ye JH, Fedkiw PS (1996) Electrochim Acta 41:221

    Article  CAS  Google Scholar 

  64. Baunach T, Ivanova V, Kolb DM, Boyen HG, Ziemann P, Buttner M, Oelhafen P (2004) Adv Mater 16:2024

    Article  CAS  Google Scholar 

  65. Qian L, Liu Y, Song Y, Li Z, Yang X (2005) Electrochem Commun 7:1209

    Article  CAS  Google Scholar 

  66. Zhu W et al (2009) Electrochim Acta. doi:10.1016/j.electacta.2009.08.059

  67. Heinig NF, Kharbanda N, Pynenburg MR, Zhou XJ, Schultz GA, Leung KT (2008) Mater Lett 62:2285

    Article  CAS  Google Scholar 

  68. Pirota K, Navas D, Vélez MH, Nielsch K, Vázquez M (2004) J Alloy Compd 369:18

    Article  CAS  Google Scholar 

  69. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  70. Schönenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krüger M (1997) J Phys Chem B101:5497

    Google Scholar 

  71. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Angew Chem Int Ed Engl 41:3665

    Article  CAS  Google Scholar 

  72. Shan Y, Yang G, Gong J, Zhang X, Zhu L, Qu L (2008) Electrochim Acta 53:7751

    Article  CAS  Google Scholar 

  73. Chen Y, Chen SP, Chen QS, Zhou ZY, Sun SG (2008) Electrochim Acta 53:6938

    Article  CAS  Google Scholar 

  74. Cuesta A, Gutirrez C (1996) J Phys Chem B 100:12600

    Article  CAS  Google Scholar 

  75. Park H, Ayala P, Deshusses MA, Mulchandani A, Choi H, Myunga NV (2008) Chem Eng J 139:208

    Article  CAS  Google Scholar 

  76. Hu J, Chen G, Lo IMC (2006) J Environ Eng 132:709

    Article  CAS  Google Scholar 

  77. Lee SJ, Jeong JR, Shin SC, Kim JC, Kim JD (2004) J Magn Magn Mater 282:147

    Article  CAS  Google Scholar 

  78. Isse AA, Gottardello S, Maccato C, Gennaro A (2006) Electrochem Commun 8:1707

    Article  CAS  Google Scholar 

  79. Hussain S, Pal AK (2008) Mater Lett 62:1874

    Article  CAS  Google Scholar 

  80. Starowicz M, Stypuła B, Banas J (2006) Electrochem Commun 8:227

    Article  CAS  Google Scholar 

  81. El Abedin SZ, Endres F (2009) Electrochim Acta 54:5673

    Article  Google Scholar 

  82. Dalchiele EA, Marottia RE, Cortes A, Riveros G, Gomez H, Martinez L, Romero R, Leinen D, Martin F, Ramos-Barrado JR (2007) Physica E 37:184

    Article  CAS  Google Scholar 

  83. Hu H, Chen G, Zhang J (2008) Carbon 46:1095

    Article  CAS  Google Scholar 

  84. Rivera M, Rios-Reyes CH, Mendoza-Huizar LH (2008) Appl Surf Sci 255:1754

    Article  CAS  Google Scholar 

  85. Molares MET, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU (2001) Adv Mater 13:62

    Article  CAS  Google Scholar 

  86. Yi G, Schwarzacher W (1999) Appl Phys Lett 74:1746

    Article  CAS  Google Scholar 

  87. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690

    Article  CAS  Google Scholar 

  88. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Chem Phys Lett 363:123

    Article  CAS  Google Scholar 

  89. Jerome R, Jerome C (1998) Angew Chem Int Ed 37:215

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Head of the Department and Dr. Suresh Reddy for their encouragement and support during the preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, U.S. Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41, 257–270 (2011). https://doi.org/10.1007/s10800-010-0234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0234-3

Keywords

Navigation