Skip to main content
Log in

Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous solid polymer electrolytes (SPE) were prepared in the form of thin films by phase inversion by direct immersion in non-solvent acetone or methanol, using a copolymer of polyacrylonitrile and poly (vinyl acetate) in ethylene carbonate/dimethylene carbonate (EC/DMC 1:1 v/v) as plasticizer, which contained different LiClO4 percentages. SEM images revealed pores on a micrometer scale (average diameter around 2 μm) distributed inside and on the surface of the films. XRD patterns revealed a predominantly amorphous behavior, favorable to the ionic conduction process. Thin films presented low glass transition temperatures (T g), between −67 and −58 °C. Thin films showed a thermal stability higher than those obtained for the gels. Thin films (average thickness of 22 μm) showed ionic conductivity around 10−10 S cm−1 and 10−7 S cm−1 by immersion in acetone and methanol, respectively. The porous thin films when were swollen in liquid electrolyte, the maximum ionic conductivity value reached was of 2.5 × 10−4 S cm−1 with 10 % LiClO4 at 25 °C. The oxidation of the SPE only occurred around 4.5 V for the gel and 4.8 V versus Li/Li+ for the SPE thin film, thus resulting in a wide electrochemical stability. A stable passive layer at the interface between the polymer electrolyte and lithium metal was formed within the first 10 h and maintained during 4 weeks. The cell containing LiCoO2 in thin-film electrolyte presented the one well-known plateaux for the Li-ion intercalation in the 4 V region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium–air battery. Nat Chem 4(1):579–585

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 45(9):2419–2430

    Article  Google Scholar 

  3. Lu L, Hana X, Lia J, Huab J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  4. Hossain S (1995) Rechargeable Lithium Batteries (Ambient Temperature), Handbook of Batteries, 2

  5. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81

    Article  CAS  Google Scholar 

  6. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolyte for secondary lithium batteries. J Power Sources 88(2):169–191

    Article  CAS  Google Scholar 

  7. Silva RA (1999) Estudo de Eletrólitos Poliméricos a base de Poliéter por spectroscopia Raman, Análise Térmica e Condutividade Iônica. Tese de Doutorado, UFMG

  8. Fautex D, Massucco A, Mclin M (1995) Lithium polymer electrolyte rechargeable battery. Electrochim Acta 40(13):2185–2190

    Article  Google Scholar 

  9. Cunha FOV (2005) Desenvolvimento de redes de polímeros interpenetrantes (IPN) para a aplicação como eletrólito polimérico. Tese de Doutorado, UFRGS

  10. Amaral FA (2005) Propriedades estruturais e eletroquímicas de espinélios de lítio e manganês dopados para uso em baterias de lítio. Tese de Doutorado, UFSCAR

  11. Florjanczyk Z, Bzducha W, Langwald N, Dygas JR, Krok F, Faraj B (2000) Lithium gel polyelectrolytes based on crosslinked maleic anhydride–styrene copolymer. Electrochima Acta 45(21):3563–3571

    Article  CAS  Google Scholar 

  12. Owens BB, Skarstad PM, Untereker DF (1995) Solid-electrolytes cells. In: Linden D (ed) Handbook of Batteries, 2nd edn. Hill Book, New York

    Google Scholar 

  13. Akashi H, Sekai K, Tanaka K (1998) A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochim Acta 43(10):1193–1197

    Article  CAS  Google Scholar 

  14. Kumar GG, Munichandraiah N (1999) Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte. Electrochim Acta 44(15):2663–2666

    Article  CAS  Google Scholar 

  15. Ballard DGH, Chesire P, Mann TS, Przeworshi JE (1990) Ionic conductivity in organic solids derived from amorphous macromolecules. Macromolecules 23(5):1256–1264

    Article  CAS  Google Scholar 

  16. Fonseca CP, Neves S (2002) Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide. J Power Sources 104(1):85–89

    Article  CAS  Google Scholar 

  17. Benedict TJ, Banumath IS, Veluchamy A, Gangadharan R, Zulfihar AA, Rajendran S (1998) Characterization of plasticized solid polymer electrolyte by XRD and AC Impedance methods. J Power Sources 75(1):171–174

    Article  CAS  Google Scholar 

  18. Yogesh SJ, Gupta S, Singh K, Bhattachaya A (2008) Porometry studies of the polysulfone membranes on addition of poly (ethylene glycol) in gelation bath during preparation. J Mex Chem Soc (Guanajuato) 52(2):140–144

    Google Scholar 

  19. Amaral FA, Dalmolin C, Canobre SC, Bochhi N, Rocha-Filho RC, Biaggio SR (2007) Electrochemical and physical properties of poly (acrylonitrile)/poly (vinyl acetate)-based gel electrolytes for lithium ion batteries. J Power Sources 164(1):379–385

    Article  CAS  Google Scholar 

  20. Radici Group. http://www.radicigroup.com/en/news-media/press-releases/brazil-radicigroup-focuses-its-development-work-on-carbon fibre-precursor-14872. Accessed 10 January 2013

  21. Panero S, Scrosati B (2000) Gelification of liquid-polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J Power Sources 90(1):13–19

  22. Appetecchi GB, Croce F, Marassi R, Persi L, Romagnoli P, Scrosati B (1999) Lithium insertion into carbonaceous materials and transition metal oxides from high performance polymer electrolytes. Electrochim Acta 45(1):23–30

    Article  CAS  Google Scholar 

  23. Rajendran S, Bama VS (2010) A study on the effect of various plasticizers in poly (vinyl acetate)-poly (methyl methacrylate) based gel electrolytes. J Non-Cryst Solids (Amsterdam) 356(50):2764–2768

    Article  CAS  Google Scholar 

  24. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 ( m) for 4 volt secondary lithium cells. J Electrochem Soc 140(7):1862–1870

    Article  CAS  Google Scholar 

  25. Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69(3):212–221

    Article  CAS  Google Scholar 

  26. Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics (Amsterdam) 201(1):73–80

    Article  CAS  Google Scholar 

  27. Avrillon R, Deschamps A, Driancourt JC, Mileo E (1990) Les techniques de séparation de gaz par membranes. Oil Gas Sci Technol 45(4):507–524

    Article  CAS  Google Scholar 

  28. Work WJ, Horie K, Hess RFT (2004) Macromolecular division subcommittee on macromolecular terminology Stepto. Pure Appl Chem 76(11):1985–2007

    Article  CAS  Google Scholar 

  29. Xue TJ, Mckinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab (Essex, England) 58(1):193–202

    Article  CAS  Google Scholar 

  30. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325(2):683–690

    Article  CAS  Google Scholar 

  31. Junior CAR, Pardini LC, Alves NP, Fleming RR (2011). Estudo termogravimétrico da poliacrilonitrila com o plastificante glicerol, 11° Congresso Brasileiro de Polímeros, Anais

  32. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2003) Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156(1):179–195

    Article  CAS  Google Scholar 

  33. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  34. Rezende CA, Luchesi C, Barbo MLP, Duek EAR (2005) Membranas de poli (ácido lático-co-ácido glicólico) como curativos para pele. Polímeros (São Carlos) 15:232–238

    Article  CAS  Google Scholar 

  35. Silverstain MS, Najary Y, Lumelsky Y, Von Lampe I, Grader GS, Shter GE (2004) Complex formation and degradation in poly (acrylonitrile-co-vinyl acetate) containing metal nitrates. Polymer 45(3):937–947

    Article  Google Scholar 

  36. Vieira WG (2009). Ciência e tecnologia dos materiais. Alagoas: UFAL

  37. Wang Z, Huang B, Xue R, Huang X, Chen L (1999) Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics (Amsterdam) 121(1):141–156

    Article  CAS  Google Scholar 

  38. Huang B, Wang Z, Chen L, Xue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91(3):279–284

    Article  CAS  Google Scholar 

  39. Huang B, Wang Z, Li G, Huang H, Xue R, Chen L, Wang F (1996) Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85(1–4):79–84

    Article  CAS  Google Scholar 

  40. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Letchworth

    Google Scholar 

  41. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929

    Article  CAS  Google Scholar 

  42. Lee S, Kim E-Y, Lee H, Oh E-S (2014) Effects of polymeric binders on electrochemical performances of spinel lithium manganese oxide cathodes in lithium ion batteries. J Power Sources 269:418–423

    Article  CAS  Google Scholar 

  43. Borghini MC, Mastragostino M, Zanelli A (1996) Reliability of lithium batteries with crosslinked polymer electrolytes. Electrochemical Acta 41(15):2369–2373

    Article  CAS  Google Scholar 

  44. Croce F, Scrosati B (1993) Nanocomposite polymer electrolytes for lithium batteries. J Power Sources 43:9–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Radici Crylor of Brazil for providing the PAN/PVA copolymer and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for technical support. This work was supported by FAPEMIG (grants APQ 2279/2010). L. C. T. Morais and R. G. Rocha are grateful to FAPEMIG for their scholarships (FAPEMIG 2013- EXA041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Amaral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, F.A., Sousa, R.M., Morais, L.C.T. et al. Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion. J Appl Electrochem 45, 809–820 (2015). https://doi.org/10.1007/s10800-015-0816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0816-1

Keywords

Navigation