Skip to main content
Log in

Improvement of the Structural and Electrical Properties of the Proton-Conducting PVA-NH4NO3 Solid Polymer Electrolyte System by Incorporating Nanosized Anatase TiO2 Single-Crystal

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A proton-conducting nanocomposite polymer electrolyte (NCPE) system, based on polyvinyl alcohol (PVA) as the host polymer and ammonium nitrate (NH4NO3) as the proton source, has been prepared with different concentrations of nanosized titanium dioxide (TiO2) by solution casting. The changes in the structural features related to the electrical properties have been studied using XRD analysis, which revealed that the NCPE sample with 8 wt.% TiO2 NPs exhibits the highest amorphous content. The addition of single-crystal TiO2 NPs to the proton-conducting polymer electrolyte has resulted in a remarkable enhancement of the ionic conductivity of the system. A maximum DC conductivity of 5.52 × 10−3 S cm−1 at 303 K has been achieved for the NCPE containing 8 wt.% of TiO2 NPs. The temperature-dependent ionic conductivity was displayed in a typical Vogel–Tammann–Fulcher-type equation, indicating a direct correlation between ionic conductivity and segmental movements of the PVA chains. The AC conductivity spectra of NCPEs have been studied in terms of the universal power law of Jonscher, and the dielectric relaxation phenomenon was analyzed using electric modulus formalism to assess if the relaxation is Debye or non-Debye type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Z. Dong, Q. Zhang, C. Yu, J. Peng, J. Ma, X. Ju, and M. Zhai, Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics 19, 1587 (2013).

    Article  CAS  Google Scholar 

  2. C. Devi, J. Gellanki, H. Pettersson, and S. Kumar, High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci. Rep. 11, 20180 (2021).

    Article  CAS  Google Scholar 

  3. A. Obeid, H. EL Balaa, O. EL Samad, R. Awad, and M.S. Badawi, Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications. Eur. Phys. J. Plus 137, 1229 (2022).

    Article  CAS  Google Scholar 

  4. P. Utpalla, S.K. Sharma, S.K. Deshpande, J. Bahadur, D. Sen, M. Sahu, and P.K. Pujari, Role of free volumes and segmental dynamics on ion conductivity of PEO/LiTFSI solid polymer electrolytes filled with SiO2 nanoparticles: a positron annihilation and broadband dielectric spectroscopy study. Phys. Chem. Chem. Phys. 23, 8585 (2021).

    Article  CAS  Google Scholar 

  5. M. Mujtaba, R. Fernandez-Marín, E. Robles, J. Labidi, B.A. Yilmaz, and H. Nefzi, Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohyd. Polym. 271, 118424 (2021).

    Article  CAS  Google Scholar 

  6. O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, Structural and electrical conductivity of CH:MC bio-poly-blend films: optimize the perfect composition of the blend system. Bull. Mater. Sci. 42, 64 (2019).

    Article  Google Scholar 

  7. M. Deka and A. Kumar, Dielectric and conductivity studies of 90 MeV O7+ ion irradiated poly(ethylene oxide)/montmorillonite based ion conductor. J. Solid State Electrochem. 17, 977 (2013).

    Article  CAS  Google Scholar 

  8. K. Gohel and D.K. Kanchan, Effect of PC:DEC plasticizers on structural and electrical properties of PVDF–HFP:PMMA based gel polymer electrolyte system. J. Mater. Sci. Mater. Electron. 30, 12260 (2019).

    Article  CAS  Google Scholar 

  9. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, and A.A.R. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 26, 326 (2016).

    Article  CAS  Google Scholar 

  10. M. Bulinski, Metal doped PVA films for opto-electronics-optical and electronic properties, an overview. Molecules 26, 2886 (2021).

    Article  CAS  Google Scholar 

  11. H. Pingan, J. Mengjun, Z. Yanyan, and H. Ling, A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv. 7, 2450 (2017).

    Article  Google Scholar 

  12. Z. Alsayed, M.S. Badawi, and R. Awad, Characterization of zinc ferrite nanoparticles capped with different PVP concentrations. J. Electron. Mater. 48, 4925 (2019).

    Article  CAS  Google Scholar 

  13. S. Alipoori, S. Mazinani, S.H. Aboutalebi, and F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy Storage 27, 101072 (2020).

    Article  Google Scholar 

  14. H. Gao and K. Lian, A H5BW12O40–polyvinyl alcohol polymer electrolyte and its application in solid supercapacitors. J. Mater. Chem. A 4, 9585 (2016).

    Article  CAS  Google Scholar 

  15. N. Farah, H.M. Ng, A. Numan, C.W. Liew, N.A.A. Latip, K. Ramesh, and S. Ramesh, Solid polymer electrolytes based on poly(vinyl alcohol) incorporated with sodium salt and ionic liquid for electrical double layer capacitor. Mater. Sci. Eng. B 251, 11446 (2019).

    Article  Google Scholar 

  16. V.R. Sunitha, S.K.M. Kabbur, G.S. Pavan, N. Sandesh, M.R. Suhas, C. Lalithnarayan, N. Laxman, and S. Radhakrishnan, Lithium ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers. Ionics 26, 823 (2020).

    Article  CAS  Google Scholar 

  17. S. Choudhary and R.J. Sengwa, Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation proper-ties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 247, 924 (2017).

    Article  CAS  Google Scholar 

  18. H. Gao and K. Lian, Effect of SiO2 on silicotungstic Acid-H3PO4-poly (vinyl alcohol) electrolyte for electrochemical supercapacitors. J. Electrochem. Soc. 160, A505 (2013).

    Article  CAS  Google Scholar 

  19. G.P. Pandey, S.A. Hashmi, and R.C. Agrawal, Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J. Phys. D Appl. Phys. 41, 055409 (2008).

    Article  Google Scholar 

  20. A. Dey, S. Karan, and S.K. De, Thermal and electric properties of CeO2 nanoparticles dispersed in polyethylene oxide:NH4ClO4 complex. Solid State Ionics 178, 1963 (2008).

    Article  CAS  Google Scholar 

  21. J.D. Jeon, M.J. Kim, and S.Y. Kwak, Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes. J. Power Sources 162, 1304 (2006).

    Article  CAS  Google Scholar 

  22. S. Jayanthi, K. Kulasekarapandian, A. Arulsankar, K. Sankaranarayanan, and B. Sundaresan, Influence of nanosized TiO2 on the structural, electrical, and morphological properties of polymer-blend electrolytes PEO-PVC-LiClO4. J. Compos. Mater. 49, 1035 (2015).

    Article  CAS  Google Scholar 

  23. C.M. Hussain and S. Mitra, Nanomaterials for sample preparation. Compr. Samp. Sample Prep. 2, 389 (2012).

    Article  Google Scholar 

  24. Y. Wang, T. Wu, Y. Zhou, C. Meng, W. Zhu, and L. Liu, TiO2-based nanoheterostructures for promoting gas sensitivity performance: designs, developments, and prospects. Sensors 17, 1971 (2017).

    Article  Google Scholar 

  25. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, and X. Wang, Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10, 546 (2020).

    Article  CAS  Google Scholar 

  26. V.P.H. Huy, S. So, and J. Hur, Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials 11, 614 (2021).

    Article  CAS  Google Scholar 

  27. H. Erabhoina, D. Rosenbach, J. Mohanraj, and M. Thelakkat, Solid polymer nanocomposite electrolytes with improved interface properties towards lithium metal battery application at room temperature. Electrochim. Acta 387, 138455 (2021).

    Article  CAS  Google Scholar 

  28. M.A.M. Saeed and O.G. Abdullah, Effect of high ammonium salt concentration and temperature on the structure, morphology, and ionic conductivity of proton-conductor solid polymer electrolytes based PVA. Membranes 10, 262 (2020).

    Article  CAS  Google Scholar 

  29. M.A.M. Saeed and O.G. Abdullah, Effect of structural features on ionic conductivity and dielectric response of PVA proton conductor-based solid polymer electrolytes. J. Electron. Mater. 50, 432 (2021).

    Article  CAS  Google Scholar 

  30. O.G. Abdullah, Y.A.K. Salman, D.A. Tahir, G.M. Jamal, H.T. Ahmed, A.H. Mohamad, and A.K. Azawy, Effect of ZnO nanoparticle content on the structural and ionic transport parameters of polyvinyl alcohol based proton-conducting polymer electrolyte membranes. Membranes 11, 163 (2021).

    Article  CAS  Google Scholar 

  31. X. Gu, N. Yu, L. Zhang, J. Yang, J. Hu, and Z. Chen, Growth of TiO2 nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode. RSC Adv. 5, 102868 (2015).

    Article  CAS  Google Scholar 

  32. J. Xing, Y.H. Li, H.B. Jiang, Y. Wang, and H.G. Yang, The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst. Int. J. Hydrogen Energ. 39, 1237 (2014).

    Article  CAS  Google Scholar 

  33. S. Sau and S. Kundu, Variation in structure and properties of poly(vinyl alcohol) (PVA) film in the presence of silver nanoparticles grown under heat treatment. J. Mol. Struct. 1250, 131699 (2022).

    Article  CAS  Google Scholar 

  34. V. Moniha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, and G. Boopathi, Conductive bio-polymer electrolyte io-ta-carrageenan with ammonium nitrate for application in electrochemical devices. J. Non-Cryst. Solids 481, 424 (2018).

    Article  CAS  Google Scholar 

  35. A.H. Mohamad, O.G. Abdullah, and S.R. Saeed, Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results Phys. 16, 102898 (2020).

    Article  Google Scholar 

  36. Y.M. Yusof, H.A. Illias, M.F. Shukur, and M.F.Z. Kadir, Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics 23, 681 (2017).

    Article  CAS  Google Scholar 

  37. Z. Alsayed, M.S. Badawi, and R. Awad, Investigation of thermal and mechanical behavior of HDPE/ZnFe2O4 composite. J. Inorg. Organomet. Polym. 31, 2757 (2021).

    Article  CAS  Google Scholar 

  38. Y.L. Nimah, M.Y. Cheng, J.H. Cheng, J. Rick, and B.J. Hwang, Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J. Power Sources 278, 375 (2015).

    Article  CAS  Google Scholar 

  39. S.K. Patla, R. Ray, K. Asokan, and S. Karmakar, Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes. J. Appl. Phys. 123, 125102 (2018).

    Article  Google Scholar 

  40. O.G. Abdullah, R.R. Hanna, H.T. Ahmed, A.H. Mohamad, S.A. Saleem, and M.A.M. Saeed, Conductivity and dielectric properties of lithium-ion biopolymer blend electrolyte based film. Results Phys. 24, 104135 (2021).

    Article  Google Scholar 

  41. T.S.R.T. Naiwi, M.M. Aung, A. Ahmad, M. Rayung, M.S. Suait, N.A. Yusof, and K.Z.W. Lae, Enhancement of plasticizing effect on bio-based polyurethane acrylate solid polymer electrolyte and its properties. Polymers 10, 1142 (2018).

    Article  Google Scholar 

  42. H.T. Ahmed and O.G. Abdullah, Structural and ionic conductivity characterization of PEO:MC-NH4I proton-conducting polymer blend electrolytes based films. Results Phys. 16, 102861 (2020).

    Article  Google Scholar 

  43. H.T. Ahmed, V.J. Jalal, D.A. Tahir, A.H. Mohamad, and O.G. Abdullah, Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results Phys. 15, 102735 (2019).

    Article  Google Scholar 

  44. P. Sharma, D.K. Kanchan, and N. Gondaliya, Effect of ethylene carbonate concentration on structural and electrical properties of PEO–PMMA polymer blends. Ionics 19, 777 (2013).

    Article  CAS  Google Scholar 

  45. K.M. Diederichsen, H.G. Buss, and B.D. McCloskey, The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50, 3831 (2017).

    Article  CAS  Google Scholar 

  46. X.L. Hu, G.M. Hou, M.Q. Zhang, M.Z. Rong, W.H. Ruan, and E.P. Giannelis, A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. J. Mater. Chem. 22, 18961 (2012).

    Article  CAS  Google Scholar 

  47. A. Arya and A.L. Sharma, Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J. Phys. Condens. Matter 30, 165402 (2018).

    Article  Google Scholar 

  48. A. Tiliakos, M. Iordache, and A. Marinoiu, Ionic conductivity and dielectric relaxation of NASICON superionic conductors at the near-cryogenic regime. Appl. Sci. 11, 8432 (2021).

    Article  CAS  Google Scholar 

  49. A.M. El-Khatib, A.S. Doma, M.S. Badawi, A.E. Abu-Rayan, N.S. Aly, J.S. Alzahrani, and M.I. Abbas, Conductive natural and waste rubbers composites-loaded with lead powder as environmental flexible gamma radiation shielding material. Mater. Res. Express 7, 105309 (2020).

    Article  CAS  Google Scholar 

  50. O.G. Abdullah, H.T. Ahmed, D.A. Tahir, G.M. Jamal, and A.H. Mohamad, Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results Phys. 23, 104073 (2021).

    Article  Google Scholar 

  51. A.R. Polu, R. Kumar, and H.W. Rhee, Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21, 125 (2016).

    Article  Google Scholar 

  52. M.H. Hamsan, S.B. Aziz, M.M. Nofal, M.A. Brza, R.T. Abdulwahid, J.M. Hadi, W.O. Karim, and M.F.Z. Kadir, Characteristics of EDLC device fabricated from plasticized chitosan:MgCl2 based polymer electrolyte. J. Mater. Res. Technol. 9, 10635 (2020).

    Article  CAS  Google Scholar 

  53. E.Y. Lin, A.L. Frischknecht, and R.A. Riggleman, Chain and segmental dynamics in polymer–nanoparticle composites with high nanoparticle loading. Macromolecules 54, 5335 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the staff members of the Advanced Materials Research Laboratory at the Physics Department, the University of Sulaimani, for providing the facilitates for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Mustafa, B.S., Bdewi, S.F. et al. Improvement of the Structural and Electrical Properties of the Proton-Conducting PVA-NH4NO3 Solid Polymer Electrolyte System by Incorporating Nanosized Anatase TiO2 Single-Crystal. J. Electron. Mater. 52, 3921–3930 (2023). https://doi.org/10.1007/s11664-023-10399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10399-6

Keywords

Navigation