Skip to main content
Log in

Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer Network Structure

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Here we report gel polymer electrolytes (GPEs) formed by the film casting of the solution containing poly(ethylene glycol) methyl ether methacrylate (PEGMA) and trimethylolpropane ethoxylate triacrylate (ETPTA) with poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), followed by the thermal radical polymerization and liquid electrolyte absorption. The resulting GPEs show a semi-interpenetrating polymer network (SIPN) structure that provides film robustness which is investigated by morphological, structural, and electrochemical studies. Particularly, the GPE prepared by the composition of 98 mol% PEGMA and 2 mol% ETPTA in the presence of 40 wt% of PVDF-HFP (relative to total amount of PEGMA and ETPTA) manifests large ionic conductivity (1.46 × 10−3 S cm−1) and tensile strength (6.28 MPa at elongation at break of 156%) at a room temperature due to large uptake of the liquid electrolyte (up to 267%) and SIPN structure. We also verify that the GPE is electrochemically stable up to 4.7 V (vs. Li/L+), suggesting it holds the great promise of a polymer electrolyte membrane for energy storages such as rechargeable batteries or supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008).

    Article  CAS  Google Scholar 

  2. W. Zheng, R. Lv, B. Na, H. Liu, T. Jin, and D. Yuan, J. Mater. Chem. A, 5, 12969 (2017).

    Article  CAS  Google Scholar 

  3. F. Pignanelli, M. Romero, R. Faccio, L. Fernández-Werner, and A. W. Mombrú, J. Phys. Chem. C, 122, 1492 (2018).

    Article  CAS  Google Scholar 

  4. J. Wang, S. Li, Q. Zhao, C. Song, and Z. Xue, Adv. Funct. Mater., doi: https://doi.org/10.1002/adfm.202008208 (2020).

  5. J.-H. Baik, D.-G. Kim, J. Shim, J. H. Lee, Y.-S. Choi, and J.-C. Lee, Polymer, 99, 704 (2016).

    Article  CAS  Google Scholar 

  6. S.-K. Kim, D.-G. Kim, A. Lee, H.-S. Sohn, J. J. Wie, N. A. Nguyen, M. E. Mackay, and J.-C. Lee, Macromolecules, 45, 9347 (2012).

    Article  CAS  Google Scholar 

  7. D. G. Kim, H. S. Sohn, S. K. Kim, A. Lee, and J. C. Lee, J. Polym. Sci., Part A: Polym. Chem., 50, 3618 (2012).

    Article  CAS  Google Scholar 

  8. P. K. Varshney and S. Gupta, Ionics, 17, 479 (2011).

    Article  CAS  Google Scholar 

  9. K. Karuppasamy, H. W. Rhee, P. A. Reddy, D. Gupta, L. Mitu, A. R. Polu, and X. S. Shajan, J. Ind. Eng. Chem., 40, 168 (2016).

    Article  CAS  Google Scholar 

  10. M. Wang, L. Fan, G. Qin, X. Hu, Y. Wang, C. Wang, J. Yang, and Q. Chen, J. Membr. Sci., 597, 117740 (2020).

    Article  CAS  Google Scholar 

  11. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources, 226, 272 (2013).

    Article  CAS  Google Scholar 

  12. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, and S. Dong, Mater. Chem. Phys., 74, 98 (2002).

    Article  CAS  Google Scholar 

  13. L. Yesappa, S. Ashokkumar, H. Vijeth, M. Basappa, S. Ganesh, and H. Devendrappa, J. Radioanal. Nucl. Chem., 322, 5 (2019).

    Article  CAS  Google Scholar 

  14. Y. M. Lee, N.-S. Choi, J. H. Park, and J.-K. Park, J. Power Sources, 119, 964 (2003).

    Article  Google Scholar 

  15. Y. Xia, X. Wang, X. Xia, R. Xu, S. Zhang, J. Wu, Y. Liang, C. Gu, and J. Tu, Chem. Eur. J., 23, 15203 (2017).

    Article  CAS  Google Scholar 

  16. J. Zhang, S. Chen, X. Xie, K. Kretschmer, X. Huang, B. Sun, and G. Wang, J. Membr. Sci., 472, 133 (2014).

    Article  CAS  Google Scholar 

  17. P. Pal and A. Ghosh, J. Appl. Phys., 120, 045108 (2016).

    Article  Google Scholar 

  18. M. Liu, Y. Wang, M. Li, G. Li, B. Li, S. Zhang, H. Ming, J. Qiu, J. Chen, and P. Zhao, Electrochim. Acta, 354, 136622 (2020).

    Article  CAS  Google Scholar 

  19. H. Li, Z. Xu, J. Yang, J. Wang, and S.-I. Hirano, Sustain. Energy Fuels (2020).

  20. Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, and Q. H. Yang, Adv. Mater., 29, 1604460 (2017).

    Article  Google Scholar 

  21. S. Oh, D. W. Kim, C. Lee, M.-H. Lee, and Y. Kang, Electrochim. Acta, 57, 46 (2011).

    Article  CAS  Google Scholar 

  22. Y. Li, Z. Sun, L. Shi, S. Lu, Z. Sun, Y. Shi, H. Wu, Y. Zhang, and S. Ding, Chem. Eng. J., 375, 121925 (2019).

    Article  CAS  Google Scholar 

  23. H.-J. Ha, E.-H. Kil, Y. H. Kwon, J. Y. Kim, C. K. Lee, and S.-Y. Lee, Energy Environ. Sci., 5, 6491 (2012).

    Article  CAS  Google Scholar 

  24. H. Yong, H. Park, and C. Jung, J. Power Sources, 447, 227390 (2020).

    Article  CAS  Google Scholar 

  25. E. Fedeli, O. Garcia-Calvo, T. Thieu, T. N. T. Phan, D. Gigmes, I. Urdampilleta, and A. Kvasha, Electrochim. Acta, 353, 136481 (2020).

    Article  CAS  Google Scholar 

  26. Q. Lu, J. Yang, W. Lu, J. Wang, and Y. Nuli, Electrochim. Acta, 152, 489 (2015).

    Article  CAS  Google Scholar 

  27. W. Zhang, J. Nie, F. Li, Z. L. Wang, and C. Sun, Nano Energy, 45, 413 (2018).

    Article  CAS  Google Scholar 

  28. T. Yang, C. Shu, R. Zheng, A. Hu, Z. Hou, M. Li, Z. Ran, P. Hei, and J. Long, J. Membr. Sci., 604, 118051 (2020).

    Article  CAS  Google Scholar 

  29. L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A, 4, 10038 (2016).

    Article  CAS  Google Scholar 

  30. S. Yu, L. Chen, Y. Chen, and Y. Tong, Appl. Surf. Sci., 258, 4983 (2012).

    Article  CAS  Google Scholar 

  31. S. Das and A. Ghosh, J. Phys. Chem. B, 121, 5422 (2017).

    Article  CAS  Google Scholar 

  32. S. Ibrahim and M. R. Johan, Int. J. Electrochem. Sci., 6, 5565 (2011).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Materials and Components Technology Development Program (no. 10062226) funded by the Ministry of Trade, Industry & Energy (MOTIE/KEIT, Korea) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020M3H4A3105819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Kon Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

Information is available regarding the spectroscopic and microscopic data. The materials are available via the Internet at http://www.springer.com/13233.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, M.G., Song, E. & Kim, SK. Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer Network Structure. Macromol. Res. 29, 211–216 (2021). https://doi.org/10.1007/s13233-021-9025-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9025-4

Keywords

Navigation