Skip to main content
Log in

Ni/ZrO2 composite electrodeposition in the presence of coumarin: textural modifications and properties

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel/zirconium oxide composite coatings were electrodeposited from a Watts electrolyte with and without the addition of coumarin as an organic additive under direct current regime for various values of current density j (A dm−2) and pH of the electrolyte. The electrodeposition process took place under strong hydrodynamic conditions on a stable cathode electrode. Plain nickel electrodeposits were also produced under the same electrodeposition conditions from an additive-free Watts bath in order to be used as reference. The aim of the present work is to study the influence of the codeposition of zirconium oxide particles in the metal matrix and the addition of coumarin in the bath on the texture, nickel crystallite size, surface morphology, Vickers microhardness and roughness of the deposits. The microstructure and properties of the electrodeposits affiliate with the electrolysis conditions and the synergic action of both the organic additive and the inert microparticles. This mechanism led to the preparation of composite electrocoatings oriented towards highly inhibited crystallographic axes, e.g. [211] and [110] with zirconia incorporation rates up to approximately wt 20 % and Vickers microhardness values 640 kp mm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26:4326–4329

    Article  CAS  Google Scholar 

  2. Pu Z, Liu Q, Asiri AM, Obaid AY, Sun X (2014) Graphene film-confined molybdenum sulfide nanoparticles: facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. J Power Sour 263:181–185

    Article  CAS  Google Scholar 

  3. Pu Z, Liu Q, Asiri AM, Sun X (2014) Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. J Appl Electrochem 44:1165–1170

    Article  CAS  Google Scholar 

  4. Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6:11031–11034

    Article  CAS  Google Scholar 

  5. Pu Z, Liu Q, Asiri AM, Obaid AY, Sun X (2014) One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. Electrochim Acta 134:8–12

    Article  CAS  Google Scholar 

  6. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng XR 54:121–285

    Article  Google Scholar 

  7. Dong Z, Peng X, Guan Y, Li L, Wang F (2012) Optimization of composition and structure of electrodeposited Ni–Cr composites for increasing the oxidation resistance. Corros Sci 62:147–152

    Article  CAS  Google Scholar 

  8. Fratari RQ, Robin A (2006) Production and characterization of electrolytic nickel–niobium composite coatings. Surf Coat Technol 200:4082–4090

    Article  CAS  Google Scholar 

  9. Vaezi MR, Sadrnezhaad SK, Nikzad L (2008) Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf A: Physicochem Eng Asp 315:176–182

    Article  CAS  Google Scholar 

  10. Garcia I, Fransaer J, Celis J-P (2001) Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surf Coat Technol 148:171–178

    Article  CAS  Google Scholar 

  11. Gul H, Kili F, Aslan S, Alp A, Akbulut H (2009) Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 267:976–990

    Article  Google Scholar 

  12. Lampke T, Wielage B, Dietrich D, Leopold A (2006) Details of crystalline growth in co-deposited electroplated nickel films with hard (nano) particles. Appl Surf Sci 253:2399–2408

    Article  CAS  Google Scholar 

  13. Saha RK, Khan TI (2010) Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings. Surf Coat Technol 205:890–895

    Article  CAS  Google Scholar 

  14. Gyftou P, Stroumbouli M, Pavlatou EA, Asimidis P, Spyrellis N (2005) Tribological study of Ni matrix composite coatings containing nano and micro SiC particles. Electrochim Acta 50:4544–4550

    Article  CAS  Google Scholar 

  15. Kollia C, Patta C, Vassiliou R, Kasselouri V (2005) Ni/TiO2 composite electrocoatings. Rev de Metall 41:227–231

    Article  Google Scholar 

  16. Thiemig D, Bund A (2008) Characterization of electrodeposited Ni–TiO2 nanocomposite coatings. Surf Coat Technol 202:2976–2984

    Article  CAS  Google Scholar 

  17. Xue YJ, Jia XZ, Zhou YW, Ma W, Li JS (2006) Tribological performance of Ni–CeO2 composite coatings by electrodeposition. Surf Coat Technol 200:5677–5681

    Article  CAS  Google Scholar 

  18. Sen R, Das S, Das K (2011) Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property. Surf Coat Technol 205:3847–3855

    Article  CAS  Google Scholar 

  19. Pompei E, Magagnin L, Lecis N, Cavallotti PL (2009) Electrodeposition of nickel–BN composite coatings. Electrochim Acta 54:2571–2574

    Article  CAS  Google Scholar 

  20. Xia F, Liu C, Ma C, Chu D, Miao L (2012) Preparation and corrosion behavior of electrodeposited Ni–TiN composite coatings. Int J Refract Metals Hard Mater 35:295–299

    Article  CAS  Google Scholar 

  21. Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201:9491–9496

    Article  CAS  Google Scholar 

  22. Wang F, Arai S, Endo M (2005) Preparation of nickel–carbon nanofiber composites by a pulse-reverse electrodeposition process. Electrochem Commun 7:674–678

    Article  CAS  Google Scholar 

  23. Haseko Y, Shrestha NK, Teruyama S, Saji T (2006) Reversal pulsing electrodeposition of Ni/polypyrrole composite film. Electrochim Acta 51:3652–3657

    Article  CAS  Google Scholar 

  24. Kentepozidou A, Kiparissides C, Kotzia F, Kollia C, Spyrellis N (1996) Nickel/microcapsules composite electrocoatings; the synthesis of water-containing microcapsules and preparation of the coatings. J Mater Sci 33:1175–1181

    Article  Google Scholar 

  25. Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  26. Walsh FC, Ponce de Leon C (2014) A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans IMF 92:83–98

    Article  CAS  Google Scholar 

  27. Hovenstad A, Janssen LJJ (1995) Electrochemical codeposition of inert particles in a metallic matrix. J Appl Electrochem 25:519–527

    Article  Google Scholar 

  28. Simunkova H, Pessenda-Garcia P, Wosik J, Angerer P, Kronberger H, Nauer GE (2009) The fundamentals of nano- and submicro-scaled ceramic particles incorporation into electrodeposited nickel layers: Zeta potential measurements. Surf Coat Technol 203:1806–1814

    Article  CAS  Google Scholar 

  29. Cho GSH, Woo DJ, Lee SW (2012) Pulse electrodeposition and characterisation of Ni–SiC composite coatings in presence of ultrasound. Trans IMF 90:274–280

    Article  Google Scholar 

  30. Kim MJ, Kim JS, Kim DJ, Kim HP (2009) Electro-deposition of oxide-dispersed nickel composites and the behaviour of their mechanical properties. Metals Mater Int 15:789–795

    Article  CAS  Google Scholar 

  31. Hou F, Wang W, Guo H (2006) Effect of the dispersibility of ZrO2 nanoparticles in Ni–ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings. Appl Surf Sci 252:3812–3817

    Article  CAS  Google Scholar 

  32. Chen L, Wang L, Zeng Z, Zhang J (2006) Effect of surfactant on the electrodeposition and wear resistance of Ni–Al2O3 composite coatings. Mater Sci Eng, A 434:319–325

    Article  Google Scholar 

  33. Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2008) Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf Coat Technol 202:3385–3390

    Article  CAS  Google Scholar 

  34. Rudnik E, Burzynska L, Dolasinski Ł, Misiak M (2010) Electrodeposition of nickel/SiC composites in the presence of cetyltrimethylammonium bromide. Appl Surf Sci 256:7414–7420

    Article  CAS  Google Scholar 

  35. Dardavila MM, Kollia C (2011) Pulse electrolysis for the production of hard Ni/ZrO2 composite coatings. Defect Diffus Forum 312–315:235–239

    Article  Google Scholar 

  36. Kollia C, Deligkiozi I, Dardavila MM (2010) Pulse electrolysis for the production of hard Ni/TiO2-ZrO2 composite coatings. Defect Diffus Forum 297–301:930–935

    Article  Google Scholar 

  37. Spanou S, Pavlatou EA, Spyrellis N (2009) Ni/nano-TiO2 composite electrodeposits: textural and structural modifications. Electrochim Acta 54:2547–2555

    Article  CAS  Google Scholar 

  38. Gyftou P, Pavlatou EA, Spyrellis N (2008) Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites. Appl Surf Sci 254:5910–5916

    Article  CAS  Google Scholar 

  39. Borkar T, Harimkar SP (2011) Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings. Surf Coat Technol 205:4124–4134

    Article  CAS  Google Scholar 

  40. Angerer P, Simuncova H, Schafler E, Kerber MB, Wosik J, Nauer GE (2009) Structure and texture of electrochemically prepared nickel layers with co-deposited zirconia nanoparticles. Surf Coat Technol 203:1438–1443

    Article  CAS  Google Scholar 

  41. Zhang KF, Ding S, Wang GF (2008) Different superplastic deformation behavior of nanocrystalline Ni and ZrO2/Ni nanocomposite. Mater Lett 62:719–722

    Article  CAS  Google Scholar 

  42. Benea L (2009) Electrodeposition and tribocorrosion behaviour of ZrO2–Ni composite coatings. J Appl Electrochem 39:1671–1681

    Article  CAS  Google Scholar 

  43. Amblard J, Epelboin I, Froment M, Maurin G (1979) Inhibition and nickel electrocrystallization. J Appl Electrochem 9:233–242

    Article  CAS  Google Scholar 

  44. Macheras J, Vouros D, Kollia C, Spyrellis N (1996) Nickel electrocrystallization: Influence of unsaturated organic additives on the mechanism of oriented crystal growth. Trans IMF 74:55–58

    CAS  Google Scholar 

  45. Kotzia F, Kollia C, Spyrellis N (1992) Influence of butyne-2-diol 1,4 in nickel electrocrystallization under pulse reversed current regime. Trans IMF 71:34–36

    Google Scholar 

  46. Pavlatou EA, Raptakis M, Spyrellis N (2007) Synergistic effect of 2-butyne-1,4-diol and pulse plating on the structure and properties of nickel nanocrystalline deposits. Surf Coat Technol 201:4571–4577

    Article  CAS  Google Scholar 

  47. Ciszewski A, Posluszny S, Milczarek G, Baraniak M (2004) Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte. Surf Coat Technol 183:127–133

    Article  CAS  Google Scholar 

  48. Nakamura Y, Kaneko N, Watanabe M, Nezu H (1994) Effects of saccharin and aliphatic alcohols on the electrocrystallization of nickel. J Appl Electrochem 24:227–232

    CAS  Google Scholar 

  49. Rashidi AM, Amadeh A (2010) Effect of electroplating parameters on microstructure of nanocrystalline nickel coatings. J Mater Sci Technol 26:82–86

    Article  CAS  Google Scholar 

  50. Qin LY, Lian JS, Jiang Q (2010) Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni. Trans Nonferrous Metals Soc China 20:82–89

    Article  CAS  Google Scholar 

  51. Bakhit B, Akbari A (2014) A comparative study of the effects of saccharin and β-SiC nano-particles on the properties of Ni and Ni–Co alloy coatings. Surf Coat Technol 253:76–82

    Article  CAS  Google Scholar 

  52. Darrort V, Troyon M, Ebothté J, Bissieux C, Nicollin C (1995) Quantitative study by atomic force microscopy and spectrophotometry of the roughness and brightness of electrodeposited nickel in the presence of additives. Thin Solid Films 265:52–57

    Article  CAS  Google Scholar 

  53. Atanassov N, Bozhkov H, Vitkova S, Rashkov S (1982) Morphology and properties of nickel plate deposited in the presence of butynediol. Surf Technol 17:291–299

    Article  CAS  Google Scholar 

  54. Temam HB, Chala A, Rahmane S (2011) Microhardness and corrosion behavior of Ni–SiC electrodeposited coatings in presence of organic additives. Surf Coat Technol 205:S161–S164

    Article  Google Scholar 

  55. Alimadadi H, Fanta AB, Somers MAJ, Pantleon K (2014) Crystallographic orientations and twinning of electrodeposited nickel—a study with complementary characterization methods. Surf Coat Technol 254:207–216

    Article  CAS  Google Scholar 

  56. Costavaras TA, Froment M, Hugot-Le Goff A, Georgoulis C (1973) The influence of unsaturated organic molecules in the electrocrystallization on nickel. J Electrochem Soc 120:867–874

    Article  CAS  Google Scholar 

  57. Rogers GT, Taylor KJ (1963) The effects of coumarin in the electrodeposition of nickel. Electrochim Acta 8:887–904

    Article  CAS  Google Scholar 

  58. Rogers GT, Taylor KJ (1966) The reactions of coumarin, cinnamyl alcohol, butynediol and propargyl alcohol at an electrode on which nickel is depositing. Electrochim Acta 11:1685–1695

    Article  CAS  Google Scholar 

  59. Rogers GT, Taylor KJ (1968) The effect of potential on the reactions of coumarin in the electrodeposition of nickel. Electrochim Acta 13:109–117

    Article  CAS  Google Scholar 

  60. Ye X, Celis JP, De Bonte M, Roos JR (1994) Ductility and crystallographic structure of zinc foils electrodeposited from acid zinc sulfate solutions. J Electrochem Soc 141:2698–2708

    Article  CAS  Google Scholar 

  61. Amblard J, Froment M, Maurin G (1973/74) Étude radiocrystallographique de l’orientation préférentielle des dépôts électrolytiques de nickel. Electrodepos Surf Treat 2:205–222

  62. Amblard J, Costavaras TA, Hugot-Le Goff A, Spyrellis N (1977) Progrès apportè par une détermination précise de la texture des dépots électrolytic de nickel préparés en présence d’additifs organiques. Oberfl-Surf 18:1–6

    CAS  Google Scholar 

  63. Amblard J, Froment M, Spyrellis N (1977) Origin des textures dans les dépôts électrolytiques de nickel. Surf Technol 5:205–234

    Article  CAS  Google Scholar 

  64. Lausmann GA (1996) Electrolytically deposited hardchrome. Surf Technol 86–87:814–820

    Article  Google Scholar 

  65. Kollia C, Spyrellis N, Amblard J, Froment M, Maurin G (1990) Nickel plating by pulse electrolysis: textural and microstructural modifications due to adsorption/desorption phenomena. J Appl Electrochem 20:1025–1032

    Article  CAS  Google Scholar 

  66. Amblard J, Maurin G, Mercier D, Spyrellis N (1982) Stucture multimacleé hélicoïdale autour d’un axe [210] dans les dépôts électrolytiques de nickel. Scr Metall 16:579–584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kollia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dardavila, M.M., Hamilakis, S., Loizos, Z. et al. Ni/ZrO2 composite electrodeposition in the presence of coumarin: textural modifications and properties. J Appl Electrochem 45, 503–514 (2015). https://doi.org/10.1007/s10800-015-0804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0804-5

Keywords

Navigation