Skip to main content

Advertisement

Log in

Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

“Several in vivo and human studies have reported that there are no significant adverse effects following NS administration, it is imperative to formally investigate and confirm the safety and the efficacy profile of NS extracts as a remedy for COVID-19” For this statement we referred to published studies on human and animal models which have shown that administration of NS produced no significant hepatic, renal, gastrointestinal adverse effects, or any other marked side effects other than few reported cases of allergic contact dermatitis. The toxicological and safety profile of NS has established it as a safe therapeutic herb, with a high lethal dosage 50 (LD50) value (Mashayekhi-Sardoo et al. 2020).

References

  • Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-Ldrissi M, Bouachrine M (2021) Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J Biomol Struct Dyn 39:2971–2979

    Article  CAS  PubMed  Google Scholar 

  • Abdallah HM, El-Halawany AM, Darwish KM, Algandaby MM, Mohamed GA, Ibrahim SRM et al (2022) Bio-guided isolation of SARS-CoV-2 main protease inhibitors from medicinal plants: in vitro assay and molecular dynamics. Plants Basel 11:1

  • Abidi A, Robbe A, Kourda N, Ben Khamsa S, Legrand A (2017) Nigella sativa, a traditional Tunisian herbal medicine, attenuates bleomycin-induced pulmonary fibrosis in a rat model. Biomed Pharmacother 90:626–637

    Article  CAS  PubMed  Google Scholar 

  • Adamska A, Stefanowicz-Hajduk J, Ochocka JR (2019) Alpha-Hederin, the active saponin of Nigella sativa, as an anticancer agent inducing apoptosis in the SKOV-3 cell line. Molecules 24:1

    Article  Google Scholar 

  • Agagunduz D, Celik MN, Citar Daziroglu ME, Capasso R (2021) Emergent drug and nutrition interactions in COVID-19: a comprehensive narrative review. Nutrients 13:1

    Article  Google Scholar 

  • Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Rehman MU, Ahmad P, Alkharfy KM (2020) Covid-19 and thymoquinone: Connecting the dots. Phytother Res 34:2786–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Raish M, Alkharfy KM (2021a) The potential role of thymoquinone in preventing the cardiovascular complications of COVID-19. Vascul Pharmacol 141:106899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Pawara R, Surana S, Patel H (2021b) The repurposed ACE2 inhibitors: SARS-CoV-2 entry blockers of covid-19. Top Curr Chem (cham) 379:40

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW (2021c) Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 39:4225–4233

    Article  CAS  PubMed  Google Scholar 

  • Akram Khan M, Afzal M (2016) Chemical composition of Nigella sativa Linn: Part 2 recent advances. Inflammopharmacology 24:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin B, Hosseinzadeh H (2016) Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 82:8–16

    CAS  PubMed  Google Scholar 

  • Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M et al (2021) Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules 26:1

    Article  Google Scholar 

  • Ashraf S, Ashraf S, Akmal R, Ashraf M, Kalsoom L, Maqsood A et al (2021) Prophylactic potential of honey and Nigella sativa L. against hospital and community-based SARS-CoV-2 spread: a structured summary of a study protocol for a randomised controlled trial. Trials 22:618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badary OA, Hamza MS, Tikamdas R (2021) Thymoquinone: a promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Devel Ther 15:1819–1833

    Article  PubMed  PubMed Central  Google Scholar 

  • Baig A, Srinivasan H (2022) SARS-CoV-2 inhibitors from Nigella sativa. Appl Biochem Biotechnol 194:1051–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat EM, El Wakeel LM, Hagag RS (2013) Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol 19:2529–2536

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M (2017) The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 96:173–184

    Article  CAS  PubMed  Google Scholar 

  • Bin Abdulrahman KA, Bamosa AO, Bukhari AI, Siddiqui IA, Arafa MA, Mohsin AA et al (2022) The effect of short treatment with Nigella sativa on symptoms, the cluster of differentiation (CD) profile, and inflammatory markers in mild COVID-19 patients: a randomized, double-blind controlled trial. Int J Environ Res Public Health 19:1

    Article  Google Scholar 

  • Bouchentouf S, Missoum N (2020) Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronasvirus (Covid-19): molecular docking study

  • Damiescu R, Lee DYW, Efferth T (2022) Can essential oils provide an alternative adjuvant therapy for COVID-19 infections and pain management at the same time? Pharmaceuticals (basel) 15:1

    Article  Google Scholar 

  • Dey D, Hossain R, Biswas P, Paul P, Islam MA, Ema TI et al (2022) Amentoflavone derivatives significantly act towards the main protease (3CL(PRO)/M(PRO)) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Divers 2022:1–15

    Google Scholar 

  • Divya M, Vijayakumar S, Chen J, Vaseeharan B, Duran-Lara EF (2020) South Indian medicinal plants can combat deadly viruses along with COVID-19? A review. Microb Pathog 148:104277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duru CE, Duru IA, Adegboyega AE (2021) In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull Natl Res Cent 45:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Esharkawy ER, Almalki F, Hadda TB (2022) In vitro potential antiviral SARS-CoV-19-activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 120:105587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faheem, Kumar BK, Sekhar K, Kunjiappan S, Jamalis J, Balana-Fouce R, Tekwani BL, Sankaranarayanan M (2020) Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem 104:104269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forouzanfar F, Bazzaz BS, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17:929–938

    PubMed  PubMed Central  Google Scholar 

  • Gholamnezhad Z, Shakeri F, Saadat S, Ghorani V, Boskabady MH (2019) Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna J Phytomed 9:195–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Maldonado P, Alvarenga N, Burgos-Edwards A, Flores-Giubi ME, Barua JE, Romero-Rodriguez MC et al (2022) Screening of natural products inhibitors of SARS-CoV-2 entry. Molecules 27:1

    Article  Google Scholar 

  • Gunes AE, Gozeneli O, Akal AA, Guldur ME, Savik E (2017) Reduction of side effects of hyperbaric oxygen therapy with thymoquinone treatment in rats. Undersea Hyperb Med 44:337–343

    Article  PubMed  Google Scholar 

  • Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H (2016) Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed 6:34–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hafez Ghoran S, El-Shazly M, Sekeroglu N, Kijjoa A (2021) Natural products from medicinal plants with anti-human coronavirus activities. Molecules 26:1

    Article  Google Scholar 

  • Hao DC, Ge GB, Xiao PG, Wang P, Yang L (2015) Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds. Curr Drug Metab 16:294–321

    Article  CAS  PubMed  Google Scholar 

  • He J, Liu S, Tan Q, Liu Z, Fu J, Li T et al (2022) Antiviral potential of small molecules cordycepin, thymoquinone, and N6, N6-dimethyladenosine targeting SARS-CoV-2 entry protein ADAM17. Molecules 27:1

    Article  Google Scholar 

  • Hilgenfeld R (2014) From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281:4085–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 11:56–64

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Huang S, Yin L (2021) The cytokine storm and COVID-19. J Med Virol 93:250–256

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui DS, Memish ZA, Zumla A (2014) Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 20:233–241

    Article  PubMed  Google Scholar 

  • Ikhsan M, Hiedayati N, Maeyama K, Nurwidya F (2018) Nigella sativa as an anti-inflammatory agent in asthma. BMC Res Notes 11:744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN et al (2022) Nigella sativa L. and COVID-19: a glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules 27:1

    Article  Google Scholar 

  • Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu DT, Uddin MJ (2021) Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. Phytother Res 35:1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 93:1

    Article  Google Scholar 

  • Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20

    Article  CAS  PubMed  Google Scholar 

  • Jakhmola Mani R, Sehgal N, Dogra N, Saxena S, Pande Katare D (2022) Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: in-silico study. J Biomol Struct Dyn 40:2417–2429

    Article  CAS  PubMed  Google Scholar 

  • Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT (2021) SARS-CoV-2, the pandemic coronavirus: molecular and structural insights. J Basic Microbiol 61:180–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadil Y, Mouhcine M, Filali H (2021) In silico investigation of the SARS CoV2 protease with thymoquinone, the major constituent of Nigella sativa. Curr Drug Discov Technol 18:570–573

    Article  CAS  PubMed  Google Scholar 

  • Keyhanmanesh R, Nazemiyeh H, Mazouchian H, Bagheri Asl MM, Karimi Shoar M, Alipour MR, Boskabady MH (2014) Nigella sativa pretreatment in guinea pigs exposed to cigarette smoke modulates in vitro tracheal responsiveness. Iran Red Crescent Med J 16:e10421

    Article  PubMed  PubMed Central  Google Scholar 

  • Khabbazi A, Javadivala Z, Seyedsadjadi N, Malek Mahdavi A (2020) A systematic review of the potential effects of Nigella sativa on rheumatoid arthritis. Planta Med 86:457–469

    Article  CAS  PubMed  Google Scholar 

  • Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG et al (2021) Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 85:153311

    Article  CAS  PubMed  Google Scholar 

  • Khan MA (2019) Thymoquinone, a constituent of prophetic medicine-black seed, is a miracle therapeutic molecule against multiple diseases. Int J Health Sci (qassim) 13:1–2

    CAS  PubMed  Google Scholar 

  • Khan T, Khan MA, Mashwani ZU, Ullah N, Nadhman A (2021) Therapeutic potential of medicinal plants against COVID-19: the role of antiviral medicinal metabolites. Biocatal Agric Biotechnol 31:101890

    Article  CAS  PubMed  Google Scholar 

  • Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D (2022) Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-Silico Study Braz J Biol 84:e250667

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P et al (2021) Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine 85:153361

    Article  CAS  PubMed  Google Scholar 

  • Khazdair MR, Ghafari S, Sadeghi M (2021) Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharm Biol 59:696–703

    Article  CAS  PubMed  Google Scholar 

  • Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA et al (2018) Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 8:15701

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Kirtipal N, Bharadwaj S, Kang SG (2020) From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol 85:104502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D (2016) Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 14:732–745

    CAS  PubMed  Google Scholar 

  • Koshak DAE, Koshak PEA (2020) Nigella sativa L. as a potential phytotherapy for coronavirus disease 2019: a mini review of in silico studies. Curr Ther Res Clin Exp 93:100602

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshak AE, Koshak EA, Mobeireek AF, Badawi MA, Wali SO, Malibary HM et al (2021) Nigella sativa for the treatment of COVID-19: an open-label randomized controlled clinical trial. Complement Ther Med 61:102769

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulyar MF, Li R, Mehmood K, Waqas M, Li K, Li J (2021) Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: a hope to decelerate the COVID-19 pandemic. Phytomedicine 85:153277

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Nehul S, Singh A, Tomar S (2021) Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology 561:36–46

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J et al (2020) The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 12:e12421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maideen NMP (2020) Prophetic medicine-Nigella sativa (Black cumin seeds)—potential herb for COVID-19? J Pharmacopuncture 23:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Maideen NMP, Balasubramanian R, Ramanathan S (2021) Nigella sativa (Black Seeds), a potential herb for the pharmacotherapeutic management of hypertension—a review. Curr Cardiol Rev 17:e230421187786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti S, Banerjee A, Kanwar M (2021) In silico Nigellidine (N. sativa) bind to viral spike/active-sites of ACE1/2, AT1/2 to prevent COVID-19 induced vaso-tumult/vascular-damage/comorbidity. Vascul Pharmacol 138:106856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti S, Banerjee A, Nazmeen A, Kanwar M, Das S (2022) Active-site molecular docking of nigellidine with nucleocapsid-NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella sativa in experimental rats. J Drug Target 30:511–521

    Article  CAS  PubMed  Google Scholar 

  • Majdalawieh AF, Fayyad MW (2015) Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int Immunopharmacol 28:295–304

    Article  CAS  PubMed  Google Scholar 

  • Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989

    Article  CAS  PubMed  Google Scholar 

  • Mashayekhi-Sardoo H, Rezaee R, Karimi G (2020) Nigella sativa (black seed) safety: an overview. Asian Biomed (res Rev News) 14:127–137

    Article  PubMed  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir SA, Firoz A, Alaidarous M, Alshehri B, Bin Dukhyil AA, Banawas S et al (2022) Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: an in silico approach. Saudi J Biol Sci 29:394–401

    Article  CAS  PubMed  Google Scholar 

  • Mollazadeh H, Afshari AR, Hosseinzadeh H (2017) Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis: black cumin and cancer. J Pharmacopuncture 20:158–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Morse JS, Lalonde T, Xu S, Liu WR (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 21:730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K et al (2021) Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening. Front Pharmacol 12:667704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omar S, Bouziane I, Bouslama Z, Djemel A (2020) In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin converting enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2

  • Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11:1620

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakkir Maideen NM, Hassan Jumale A, Ramadan Barakat I, Khalifa Albasti A (2023) Potential of black seeds (Nigella sativa) in the management of long COVID or post-acute sequelae of COVID-19 (PASC) and persistent COVID-19 symptoms—an insight. Infect Disord Drug Targets 2023:1

    Google Scholar 

  • Parida PK, Paul D, Chakravorty D (2020) The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytother Res 34:3420–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pk M, Aa M, Panda PK (2023) Effects of active compounds of Nigella sativa in COVID-19: a narrative review. Recent Adv Antiinfect Drug Discov 2023:1

    Google Scholar 

  • Pop RM, Trifa AP, Popolo A, Chedea VS, Militaru C, Bocsan IC, Buzoianu AD (2020) Nigella sativa: valuable perspective in the management of chronic diseases. Iran J Basic Med Sci 23:699–713

    PubMed  PubMed Central  Google Scholar 

  • Ralph R, Lew J, Zeng T, Francis M, Xue B, Roux M et al (2020) 2019-nCoV (Wuhan virus), a novel Coronavirus: human-to-human transmission, travel-related cases, and vaccine readiness. J Infect Dev Ctries 14:3–17

    Article  CAS  PubMed  Google Scholar 

  • Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL (2020) Roles of flavonoids against coronavirus infection. Chem Biol Interact 328:109211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said SA, Abdulbaset A, El-Kholy AA, Besckales O, Sabri NA (2022) The effect of Ni gella sativa and vitamin D3 supplementation on the clinical outcome in COVID-19 patients: a randomized controlled clinical trial. Front Pharmacol 13:1011522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Quispe C, Imran M, Ul-Haq I, Zivkovic J, Abu-Reidah IM et al (2021) Nigella plants—traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front Pharmacol 12:625386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setayesh M, Karimi M, Zargaran A, Abousaidi H, Shahesmaeili A, Amiri F, Hasheminasab FS (2022) Efficacy of a Persian herbal medicine compound on coronavirus disease 2019 (COVID-19): a randomized clinical trial. Integr Med Res 11:100869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Suvalka C, Bharti, Joshi M, Bahuguna A (2021) Potential inhibitors and plant based technology: an alternative approach to treat corona virus. Bioorg Chem 117:105460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ et al (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 11:222

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirvani H, Rostamkhani F, Arabzadeh E, Mohammadi F, Mohammadi F (2021) Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review. Sport Sci Health 17:849–854

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva J, Figueiredo PLB, Byler KG, Setzer WN (2020) Essential oils as antiviral agents. Potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation. Int J Mol Sci 21:1

    Article  Google Scholar 

  • Soleymani S, Naghizadeh A, Karimi M, Zarei A, Mardi R, Kordafshari G, Esmaealzadeh N, Zargaran A (2022) COVID-19: general strategies for herbal therapies. J Evid Based Integr Med 27:2515690X211053641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soy M, Keser G, Atagunduz P, Tabak F, Atagunduz I, Kayhan S (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 39:2085–2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Garg P, Srivastava P, Seth PK (2021) A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 9:e11171

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL (2020) Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10:313–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallei TE, Fatimawali, Niode NJ, Idroes R, Zidan B, Mitra S et al (2021) A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19. Evid Based Complement Alternat Med 2021:7170736

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H (2017) Review on clinical trials of black seed (Nigella sativa ) and its active constituent, thymoquinone. J Pharmacopuncture 20:179–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayman C, Cekmez F, Kafa IM, Canpolat FE, Cetinkaya M, Tonbul A, Uysal S, Tunc T, Sarici SU (2013) Protective effects of Nigella sativa oil in hyperoxia-induced lung injury. Arch Bronconeumol 49:15–21

    Article  PubMed  Google Scholar 

  • Taysi S, Algburi FS, Mohammed ZR, Ali OA, Taysi ME (2022) Thymoquinone: a review on its pharmacological importance, and its association with oxidative stress, COVID-19, and radiotherapy. Mini Rev Med Chem 22:1847–1875

    Article  CAS  PubMed  Google Scholar 

  • Tortorici MA, Veesler D (2019) Structural insights into coronavirus entry. Adv Virus Res 105:93–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touret F, de Lamballerie X (2020) Of chloroquine and COVID-19. Antiviral Res 177:104762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah S, Munir B, Al-Sehemi AG, Muhammad S, Haq IU, Aziz A, Ahmed B, Ghaffar A (2022) Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CL(pro) from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies. Saudi J Biol Sci 29:103274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Montfort RLM, Workman P (2017) Structure-based drug design: aiming for a perfect fit. Essays Biochem 61:431–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Velavan TP, Meyer CG (2020) The COVID-19 epidemic. Trop Med Int Health 25:278–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B et al (2020) COVID-19: a promising cure for the global panic. Sci Total Environ 725:138277

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J et al (2019) Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176:1026-1039 e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM (2020) SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 10:587269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2022). WHO coronavirus (COVID-19) dashboard (Online). Available: https://covid19.who.int/. Accessed 30/6/2022

  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y et al (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang Y (2020) Traditional Chinese medicine treatment of COVID-19. Complement Ther Clin Pract 39:101165

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Liu B, Xiao Z, Zhou M, Ge L, Jia F et al (2021) Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect Dis Ther 10:483–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, Sharma A, Kumar A, Handu S (2021) Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 10:1

    Article  CAS  Google Scholar 

  • Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8:475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyad Bazbouz L, Ghassan Ibrahim F, Lakshmi Chelakkot A, Matar R, Merheb M, Hodeify R, Vazhappilly CG (2023) Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections. Phytother Res 37:383–387

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z et al (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol 214:108393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang W, Sun J (2021) Prevention and treatment of COVID-19 using Traditional Chinese Medicine: a review. Phytomedicine 85:153308

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382:727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU) and Al Jalila Foundation, UAE

Funding

This study was in part supported by the Al Jalila Foundation (AJF) and the MBRU-Al Mahmeed Research Fund. ACC was supported by AJF Post-Doctoral Fellowship Research Award; NA and AP were supported by MBRU-Al Mahmeed Research Grant (ALM20-0075).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ACC, NA, and RR; Data acquisition and original draft preparation: ACC, NA, AP; Reviewing and editing: All authors; RR supervised the study.

Corresponding author

Correspondence to Asha Caroline Cyril.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyril, A.C., Ali, N.M., Nelliyulla Parambath, A. et al. Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects. Inflammopharmacol 32, 273–285 (2024). https://doi.org/10.1007/s10787-023-01385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01385-9

Keywords

Navigation