Skip to main content

Advertisement

Log in

Crosstalk between phytochemicals and inflammatory signaling pathways

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin–proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

AKT:

RAC-alpha serine/threonine-protein kinase

AP-1:

Activator protein-1

APC:

Adenomatosis polyposis coli

ARE:

Antioxidant response element

ATF:

Activating transcription factor

CAPE:

Caffeic acid phenethyl ester

CCL:

Chemokine (C–C motif) ligand

CK1:

Casein kinase 1

CG:

Catechin gallate

COX:

Cyclooxygenase

CXCL:

Chemokine (C–X–C motif) ligand

cPLA2:

Cytosolic phospholipase A2

ECG:

Epicatechin gallate

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EGC:

Epigallocatechin

EGCG:

Epigallocatechin gallate

ELAM:

Endothelial-leukocyte adhesion molecule

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

GC:

Gallocatechin

GST:

Glutathione S-transferase

GSK3:

Glycogen synthase kinase 3

HETE:

Hydroxyeicosatetraenoic acid

HMC-1:

Human mast cell-1

HMVEC:

Human microvascular endothelial cells

HpETE:

Hydroperoxyeicosatetraenoic acid

HO:

Heme oxygenase

HUVEC:

Human umbilical vein endothelial cells

ICAM:

Intercellular adhesion molecule

IкB:

Inhibitor of kappa B

IKK:

IкB kinase

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

iPLA2:

Calcium-independent phospholipase A2

JAK:

Janus tyrosine kinase

JNK:

C-Jun N-terminal kinase

Keap:

Kelch-like ECH-associated protein

LOX:

Lipoxygenase

LPS:

Lipopolysaccharide

LT:

Leukotriene

MAPK:

Mitogen-activated protein kinase

MAPKK:

MAPK kinase

MAPKKK:

MAPK kinase kinase

MDM2:

Murine double minute 2

mTORC1:

Mechanistic target of rapamycin complex 1

NF-кB:

Nuclear factor-kappa B

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NQO:

NAD(P)H: quinone oxidoreductase

Nrf2:

Nuclear factor erythroid 2-related factor 2

PCA:

Protocatechuic acid

PDG:

Prodelphinidin B-4 3'-O-gallate

PG:

Prostaglandin

PH:

Plekstrin homology

PI3K:

Phosphatidylinositol 3-kinase

PIP3:

Phosphatidylinositol (3, 4, 5)-trisphosphate

PLA2:

Phospholipase A2

PP2A:

Protein phosphatase 2A

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

Peroxisome proliferator response element

PTKs:

Protein tyrosine kinases

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinases

RXR:

Retinoid X receptor

SCF:

Stem cell factor

Src:

Sarcoma

STAT:

Signal transducers and activators of transcription

Syk:

Spleen tyrosine kinase

sPLA2:

Secretory phospholipase A2

TGF-β:

Transforming growth factor-β

TLR:

Tool-like receptor

TNBS:

2, 4, 6-Trinitrobenzene sulfonic acid

TNF:

Tumor necrosis factor

TPA:

12-O-Tetradecanoylphorbol-13-acetate

TRE:

Tetradecanoylphorbol-13-acetate responsive element

TRX:

Thioredoxin

VCAM:

Vascular cell adhesion molecule

References

  • Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W (1994) Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–471

    Article  CAS  PubMed  Google Scholar 

  • Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10.

  • Ai X-Y, Qin Y, Liu H-J, Cui Z-H, Li M, Yang J-H, Zhong W-L, Liu Y-R, Chen S, Sun T (2017) Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget 8:100216

    Article  PubMed  PubMed Central  Google Scholar 

  • Akool E-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W (2003) Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases–an update. Immunology 142:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B (2004) Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 10:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta (BBA) Rev Cancer 1072:129–157.

  • Arjumand W, Seth A, Sultana S (2011) Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in wistar rats. Food Chem Toxicol 49:2013–2021

    Article  CAS  PubMed  Google Scholar 

  • Awasthi M, Singh S, Pandey VP, Dwivedi UN (2016) Alzheimer’s disease: an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 361:256–271

    Article  CAS  PubMed  Google Scholar 

  • Azizi G, Navabi SS, Al-Shukaili A, Seyedzadeh MH, Yazdani R, Mirshafiey A (2015) The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos Univ Med J 15:e305

    Article  PubMed  PubMed Central  Google Scholar 

  • Backer JM (2010) The regulation of class IA PI 3-kinases by inter-subunit interactions. Phosphoinositide 3-kinase in Health and Disease:87–114.

  • Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6:1–16

    Article  Google Scholar 

  • Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M (2014) IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 34:839–847

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar S, Sudhakaran P, Helen A (2016) Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol 310:131–140

    Article  CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC (2010) c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim Biophys Acta (BBA)-Proteins Proteom 1804:463–475.

  • Bollig F, Winzen R, Gaestel M, Kostka S, Resch K, Holtmann H (2003) Affinity purification of ARE-binding proteins identifies poly (A)-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem Biophys Res Commun 301:665–670

    Article  CAS  PubMed  Google Scholar 

  • Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60:261–310

    Article  CAS  PubMed  Google Scholar 

  • Brancho D, Tanaka N, Jaeschke A, Ventura J-J, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JR, Ye H, Bronson RT, Dikkes P, Greenberg ME (1996) A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86:297–309

    Article  CAS  PubMed  Google Scholar 

  • Búfalo MC, Ferreira I, Costa G, Francisco V, Liberal J, Cruz MT, Lopes MC, Batista MT, Sforcin JM (2013) Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. J Ethnopharmacol 149:84–92

    Article  PubMed  Google Scholar 

  • Byun S, Lee KW, Jung SK, Lee EJ, Hwang MK, Lim SH, Bode AM, Lee HJ, Dong Z (2010) Luteolin inhibits protein kinase Cϵ and c-Src activities and UVB-induced skin cancer. Can Res 70:2415–2423

    Article  CAS  Google Scholar 

  • Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V, de la Lastra CA (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7:333–342

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  • Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629

    Article  CAS  PubMed  Google Scholar 

  • Carracedo A, Pandolfi P (2008) The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541

    Article  CAS  PubMed  Google Scholar 

  • Cavigelli M, Dolfi F, Claret F-X, Karin M (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14:5957–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambard J-C, Lefloch R, Pouysségur J, Lenormand P (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta (BBA) Mol Cell Res 1773:1299–1310.

  • Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci 96:12731–12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Wang Y, Yin X, Liu X, Xuan H (2017) Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement Altern Med 17:1–9

    Article  Google Scholar 

  • Chao C-L, Weng C-S, Chang N-C, Lin J-S, Kao S-T, Ho F-M (2010) Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res 30:858–864

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yu R, Owuor ED, Tony Kong A-N (2000a) Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharmacal Res 23:605–612

    Article  CAS  Google Scholar 

  • Chen Y-C, Yang L-L, Lee TJ (2000b) Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol 59:1445–1457

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Shen SC, Lee WR, Hou WC, Yang LL, Lee TJ (2001) Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J Cell Biochem 82:537–548

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Chow M-P, Huang W-C, Lin Y-C, Chang Y-J (2004) Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Mol Pharmacol 66:683–693

    CAS  PubMed  Google Scholar 

  • Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP (2005a) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Chen J-C, Ho F-M, Chao P-DL, Chen C-P, Jeng K-CG, Hsu H-B, Lee S-T, Wu WT, Lin W-W (2005b) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Peng W-H, Tsai K-D, Hsu S-L (2007) Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 81:1602–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S-R, Xu X-Z, Wang Y-H, Chen J-W, Xu S-W, Gu L-Q, Liu P-Q (2010) Icariin derivative inhibits inflammation through suppression of p38 mitogen-activated protein kinase and nuclear factor-κb pathways. Biol Pharm Bull 33:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Cheng A-W, Tan X, Sun J-Y, Gu C-M, Liu C, Guo X (2019a) Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS ONE 14:e0217090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S-C, Huang W-C, Pang SJ-H, Wu Y-H, Cheng C-Y (2019b) Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci 20:2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S-Y, Park S-J, Kwon M-J, Jeong T-S, Bok S-H, Choi W-Y, Jeong W-I, Ryu S-Y, Do S-H, Lee C-S (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem 243:153–160

    Article  CAS  PubMed  Google Scholar 

  • Choi J-S, Choi Y-J, Park S-H, Kang J-S, Kang Y-H (2004) Flavones mitigate tumor necrosis factor-α-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-κB. J Nutr 134:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Zhou S, Sun R, Wang L, Xing C, Liang R, Kong Q (2018) Chrysophanol relieves cognition deficits and neuronal loss through inhibition of inflammation in diabetic mice. Neurochem Res 43:972–983

    Article  CAS  PubMed  Google Scholar 

  • Claffey KP, Shih S-C, Mullen A, Dziennis S, Cusick JL, Abrams KR, Lee SW, Detmar M (1998) Identification of a human VPF/VEGF 3′ untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 9:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa G, Francisco V, Lopes CM, Cruz TM, Batista TM (2012) Intracellular signaling pathways modulated by phenolic compounds: application for new anti-inflammatory drugs discovery. Curr Med Chem 19:2876–2900

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta (BBA) Mol Cell Res 1773:1358–1375.

  • Darnell JE Jr (1996) The JAK-STAT pathway: summary of initial studies and recent advances. Recent Prog Horm Res 51:391–403 (discussion 403)

    CAS  PubMed  Google Scholar 

  • Darnell JE Jr, Kerr LM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Das UN (2011) Molecular basis of health and disease. Springer

  • Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MR, Williamson G (2001) Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radical Res 35:941–952

    Article  CAS  Google Scholar 

  • De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, Cinelli MP, Carnuccio R (2007) Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur J Pharmacol 566:192–199

    Article  PubMed  Google Scholar 

  • Dean JL, Sully G, Clark AR, Saklatvala J (2004) The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Du H, Liu D, Ma Z (2022) The role of natural products in chronic inflammation. Front Pharmacol:1521.

  • Dérijard B, Hibi M, Wu I-H, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  PubMed  Google Scholar 

  • Dıaz AM, Abad MJ, Fernández L, Silván AM, De Santos J, Bermejo P (2004) Phenylpropanoid glycosides from Scrophularia scorodonia: in vitro anti-inflammatory activity. Life Sci 74:2515–2526

    Article  PubMed  Google Scholar 

  • Doerge DR, Chang HC, Churchwell MI, Holder CL (2000) Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab Dispos 28:298–307

    CAS  PubMed  Google Scholar 

  • Domitrović R, Cvijanović O, Pugel EP, Zagorac GB, Mahmutefendić H, Škoda M (2013) Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology 310:115–123

    Article  PubMed  Google Scholar 

  • Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RH, Ito K, Russell RE, Barnes PJ (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 287:L774–L783

    Article  CAS  PubMed  Google Scholar 

  • Dorsey MJ, Tae H-J, Sollenberger KG, Mascarenhas NT, Johansen LM, Taparowsky EJ (1995) B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 11:2255–2266

    CAS  PubMed  Google Scholar 

  • Dumesic PA, Scholl FA, Barragan DI, Khavari PA (2009) Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol 185:409–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  CAS  PubMed  Google Scholar 

  • Efimova T, Broome A-M, Eckert RL (2003) A regulatory role for p38δ MAPK in keratinocyte differentiation: evidence for p38δ-ERK1/2 complex formation. J Biol Chem 278:34277–34285

    Article  CAS  PubMed  Google Scholar 

  • Elliott PJ, Zollner TM, Boehncke W-H (2003) Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 81:235–245

    Article  CAS  PubMed  Google Scholar 

  • El-Shitany NA, Eid BG (2019) Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed Pharmacother 120:109567

    Article  CAS  PubMed  Google Scholar 

  • Erdelyi K, Kiss A, Bakondi E, Bai P, Szabo C, Gergely P, Erdödi F, Virag L (2005) Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 68:895–904

    Article  CAS  PubMed  Google Scholar 

  • Farzaei MH, Singh AK, Kumar R, Croley CR, Pandey AK, Coy-Barrera E, Kumar Patra J, Das G, Kerry RG, Annunziata G (2019) Targeting inflammation by flavonoids: novel therapeutic strategy for metabolic disorders. Int J Mol Sci 20:4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favreau LV, Pickett CB (1995) The rat quinone reductase antioxidant response element: identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines (∗). J Biol Chem 270:24468–24474

    Article  CAS  PubMed  Google Scholar 

  • Felgines C, Talavera S, Gonthier M-P, Texier O, Scalbert A, Lamaison J-L, Rémésy C (2003) Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans. J Nutr 133:1296–1301

    Article  CAS  PubMed  Google Scholar 

  • Fougerat A, Gayral S, Malet N, Briand-Mesange F, Breton-Douillon M, Laffargue M (2009) Phosphoinositide 3-kinases and their role in inflammation: potential clinical targets in atherosclerosis? Clin Sci 116:791–804

    Article  CAS  Google Scholar 

  • Fu Z, Tindall D (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Wei Z, Zhou E, Zhang N, Yang Z (2014) Cyanidin-3-O-β-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model. J Lipid Res 55:1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs SY, Dolan L, Davis RJ, Ze R (1996) Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13:1531–1535

    CAS  PubMed  Google Scholar 

  • Fujiwara KT, Kataoka K, Nishizawa M (1993) Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8:2371–2380

    CAS  PubMed  Google Scholar 

  • Gao Y, Kang L, Li C, Wang X, Sun C, Li Q, Liu R, Wang J (2016) Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol 16:130–137

    Article  CAS  PubMed  Google Scholar 

  • Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295:1291–1294

    Article  CAS  PubMed  Google Scholar 

  • Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    Article  CAS  PubMed  Google Scholar 

  • Germolec DR, Shipkowski KA, Frawley RP, Evans E (2018) Markers of inflammation. Immunotox Test:57–79.

  • Gerritsen ME, Carley WW, Ranges GE, Shen C-P, Phan SA, Ligon GF, Perry CA (1995) Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol 147:278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62 TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358:414–417

    Article  CAS  PubMed  Google Scholar 

  • Gong J-H, Shin D, Han S-Y, Kim J-L, Kang Y-H (2012) Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr 142:47–56

    Article  CAS  PubMed  Google Scholar 

  • Gong G, Xie F, Zheng Y, Hu W, Qi B, He H, Dong TT, Tsim KW (2020) The effect of methanol extract from Saussurea involucrata in the lipopolysaccharide-stimulated inflammation in cultured RAW 264.7 cells. J Ethnopharmacol 251:112532

    Article  CAS  PubMed  Google Scholar 

  • Gururajan M, Dasu T, Shahidain S, Jennings CD, Robertson DA, Rangnekar VM, Bondada S (2007) Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol 178:111–121

    Article  CAS  PubMed  Google Scholar 

  • Hackett A (1986) The metabolism of flavonoid compounds in mammals. Progr Clin Biol Res 213:177–194

    CAS  Google Scholar 

  • Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochem Sci 32:364–371

    Article  CAS  PubMed  Google Scholar 

  • Han J-M, Jin Y-Y, Kim HY, Park KH, Lee WS, Jeong T-S (2010) Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-κB and mitogen-activated protein kinases in RAW264. 7 cells. Biol Pharm Bull 33:1019–1023

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4:373–385

    Article  CAS  PubMed  Google Scholar 

  • Haque MA, Jantan I, Harikrishnan H, Ghazalee S (2019) Standardized extract of Zingiber zerumbet suppresses LPS-induced pro-inflammatory responses through NF-κB, MAPK and PI3K-Akt signaling pathways in U937 macrophages. Phytomedicine 54:195–205

    Article  CAS  PubMed  Google Scholar 

  • Hazzalin CA, Cano E, Cuenda A, Barratt MJ, Cohen P, Mahadevan LC (1996) p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol 6:1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7:2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Hilberg F, Aguzzi A, Howells N, Wagner EF (1993) c-Jun is essential for normal mouse development and hepatogenesis. Nature 365:179–181

    Article  CAS  PubMed  Google Scholar 

  • Hipskind RA, Büscher D, Nordheim A, Baccarini M (1994) Ras/MAP kinase-dependent and-independent signaling pathways target distinct ternary complex factors. Genes Dev 8:1803–1816

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Higa S, Arimitsu J, Naka T, Ogata A, Shima Y, Fujimoto M, Yamadori T, Ohkawara T, Kuwabara Y (2006) Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem Biophys Res Commun 340:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hollman PC, Katan M (1997) Absorption, metabolism and bioavailability of flavonoids. In: Flavonoids in health and disease, pp 483–522.

  • Hossen MJ, Baek K-S, Kim E, Yang WS, Jeong D, Kim JH, Kweon D-H, Yoon DH, Kim TW, Kim J-H (2015) In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. J Ethnopharmacol 159:9–16

    Article  PubMed  Google Scholar 

  • Hou D-X, Luo D, Tanigawa S, Hashimoto F, Uto T, Masuzaki S, Fujii M, Sakata Y (2007) Prodelphinidin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-κB pathway. Biochem Pharmacol 74:742–751

    Article  CAS  PubMed  Google Scholar 

  • Hsu JC, Laz T, Mohn KL, Taub R (1991) Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci 88:3511–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Wang X, Wu L, Shen T, Ji L, Zhao X, Si C-L, Jiang Y, Wang G (2016) Apigenin-7-O-β-d-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct 7:1002–1013

    Article  CAS  PubMed  Google Scholar 

  • Huang S-C, Ho C-T, Lin-Shiau S-Y, Lin J-K (2005) Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun. Biochem Pharmacol 69:221–232

    Article  CAS  PubMed  Google Scholar 

  • Huwiler A, Akool E-S, Aschrafi A, Hamada FM, Pfeilschifter J, Eberhardt W (2003) ATP potentiates interleukin-1β-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J Biol Chem 278:51758–51769

    Article  CAS  PubMed  Google Scholar 

  • Hwang MK, Song NR, Kang NJ, Lee KW, Lee HJ (2009) Activation of phosphatidylinositol 3-kinase is required for tumor necrosis factor-α-induced upregulation of matrix metalloproteinase-9: Its direct inhibition by quercetin. Int J Biochem Cell Biol 41:1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa D, Matsui A, Imai M, Sonoda Y, Kasahara T (2004) Effect of various catechins on the IL-12p40 production by murine peritoneal macrophages and a macrophage cell line, J774. 1. Biol Pharm Bull 27:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Rojo AI, García-Yagüe ÁJ, Yamamoto M, De Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke A, Karasarides M, Ventura J-J, Ehrhardt A, Zhang C, Flavell RA, Shokat KM, Davis RJ (2006) JNK2 is a positive regulator of the cJun transcription factor. Mol Cell 23:899–911

    Article  CAS  PubMed  Google Scholar 

  • Jenab A, Roghanian R, Emtiazi G (2020) Bacterial natural compounds with anti-inflammatory and immunomodulatory properties (mini review). Drug Design Dev Therapy:3787–3801.

  • Jia Z, Babu PVA, Si H, Nallasamy P, Zhu H, Zhen W, Misra HP, Li Y, Liu D (2013) Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. Int J Cardiol 168:2637–2645

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Luo P, Li X, Liu P, Li Y, Xu J (2020) Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation. Cell Stress Chaperones 25:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RS, Spiegelman BM, Papaioannou V (1992) Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71:577–586

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Van Lingen B, Papaioannou V, Spiegelman B (1993) A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC (2006) Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol 148:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang G, Kong P-J, Yuh Y-J, Lim S-Y, Yim S-V, Chun W, Kim S-S (2004) Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor κB bindings in BV2 microglial cells. J Pharmacol Sci 94:325–328

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Chen J, Otsuka M, Mols J, Ren S, Wang Y, Han J (2008) Macrophage deletion of p38α partially impairs lipopolysaccharide-induced cellular activation. J Immunol 180:5075–5082

    Article  CAS  PubMed  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Z-g L, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Nomoto M, Miyashita S (2014) Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice. Int Immunopharmacol 23:617–623

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Fujiwara KT, Noda M, Nishizawa M (1994) MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14:7581–7591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka K, Igarashi K, Itoh K, Fujiwara KT, Noda M, Yamamoto M, Nishizawa M (1995) Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 15:2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerppola TK, Curran T (1994) Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 9:675–684

    CAS  PubMed  Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem Pharmacol 58:759–765

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-C, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, Yodoi J (2001) Hemin-induced activation of the thioredoxin gene by Nrf2: a differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem 276:18399–18406

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Park EJ, E-h J, Jou I (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 171:6072–6079

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Jang SI, Kim Y-J, Chung H-T, Yun Y-G, Kang T-H, Jeong O-S, Kim Y-C (2004) Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 75:261–266

    Article  CAS  PubMed  Google Scholar 

  • Kim AR, Cho JY, Zou Y, Choi JS, Chung HY (2005) Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264. 7 cells. Arch Pharmacal Res 28:297–304

    Article  CAS  Google Scholar 

  • Kim M-S, Park S-B, Suk K, Kim IK, Kim S-Y, Kim J-A, Lee SH, Kim S-H (2009) Gallotannin isolated from euphorbia species, 1, 2, 6-Tri-O-galloyl-β-d-allose, decreases nitric oxide production through inhibition of nuclear factor-κ> B and downstream inducible nitric oxide synthase expression in macrophages. Biol Pharm Bull 32:1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Kim M-C, Lee B-J, Park D-H, Hong S-H, Um J-Y (2010) Anti-inflammatory activity of chrysophanol through the suppression of NF-κB/caspase-1 activation in vitro and in vivo. Molecules 15:6436–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumamoto T, Fujii M, Hou D-X (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dhawan S, Aggarwal BB (1998) Emodin (3-methyl-1, 6, 8-trihydroxyanthraquinone) inhibits TNF-induced NF-κB activation, IκB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913–918

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Surh YJ (2007) Epigallocatechin gallate inhibits phorbol ester-induced activation of NF-κB and CREB in mouse skin: role of p38 MAPK. Ann N Y Acad Sci 1095:504–512

    Article  CAS  PubMed  Google Scholar 

  • Lawler S, Fleming Y, Goedert M, Cohen P (1998) Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol 8:1387–1391

    Article  CAS  PubMed  Google Scholar 

  • Le H, Han SY (2006) JNK regulation of oncogenesis. Mol Cells 21:167–173

    Google Scholar 

  • Lee M-J, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev 11:1025–1032

    CAS  Google Scholar 

  • Lee S-J, Lee I-S, Mar W (2003) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucose in murine macrophage cells. Arch Pharmacal Res 26:832–839

    Article  CAS  Google Scholar 

  • Lee JY, Woo E-R, Kang KW (2005) Inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J Ethnopharmacol 97:561–566

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Lee KW, Jung SK, Lee EJ, Heo Y-S, Bode AM, Lubet RA, Lee HJ, Dong Z (2010) Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem Pharmacol 80:2042–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-J, Jeong S-J, Lee H-J, Lee E-O, Bae H, Lieske JC, Kim S-H (2011) 1, 2, 3, 4, 6-Penta-O-galloyl-beta-d-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model. Kidney Int 79:538–545

    Article  CAS  PubMed  Google Scholar 

  • Lee K-H, Chow Y-L, Sharmili V, Abas F, Alitheen NBM, Shaari K, Israf DA, Lajis NH, Syahida A (2012) BDMC33, a curcumin derivative suppresses inflammatory responses in macrophage-like cellular system: role of inhibition in NF-κB and MAPK signaling pathways. Int J Mol Sci 13:2985–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Tan D, Zenali MJ, Brown RE (2010) Constitutive activation of nuclear factor-kappa B (NF-kB) signaling pathway in fibrolamellar hepatocellular carcinoma. Int J Clin Exp Pathol 3:238

    CAS  Google Scholar 

  • Liang Y-C, Huang Y-T, Tsai S-H, Lin-Shiau S-Y, Chen C-F, Lin J-K (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Yang X, Liu C, Sun Z, Wang X (2018) Effect of NF-kB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. J Musculoskelet Neuronal Interact 18:551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Kwon TK (2010) Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-κB transcriptional activity. Food Chem Toxicol 48:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lin N-Y, Lin C-T, Chang C-J (2008) Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 365:69–74

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R (2021) Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radical Biol Med 168:142–154

    Article  CAS  Google Scholar 

  • Lo A-H, Liang Y-C, Lin-Shiau S-Y, Ho C-T, Lin J-K (2002) Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 23:983–991

    Article  CAS  PubMed  Google Scholar 

  • Lu X-L, Zhao C-H, Yao X-L, Zhang H (2017) Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother 85:658–671

    Article  CAS  PubMed  Google Scholar 

  • Lv D, Guo L, Zhang T, Huang L (2017) PRAS40 signaling in tumor. Oncotarget 8(40):69076–69085

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wang Y, Dong L, Li M, Cai W (2015) Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin 47:207–213

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI (2003) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-B activation at multiple steps in Jurkat T cells.

  • Madhunapantula SV, Mosca PJ, Robertson GP (2011) The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther 12:1032–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi MD (2006) Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol 72:1304–1310

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Remesy C (2003) Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 57:235–242

    Article  CAS  PubMed  Google Scholar 

  • Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    Article  CAS  PubMed  Google Scholar 

  • Manna SK, Aggarwal RS, Sethi G, Aggarwal BB, Ramesh GT (2007) Morin (3, 5, 7, 2′, 4′-pentahydroxyflavone) abolishes nuclear factor-κB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-κB–regulated gene expression and up-regulation of apoptosis. Clin Cancer Res 13:2290–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase—moving towards therapy. Biochim Biophys Acta (BBA) Proteins Proteom 1784:159–185.

  • Martı́n AR, Villegas I, La Casa C, de la Lastra CA (2004) Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol 67:1399–1410

    Article  PubMed  Google Scholar 

  • Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochimica et Biophysica Acta (BBA)-General Subjects 1780:1325–1336.

  • Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C (2014) GSK-3–at the crossroads of cell death and survival. J Cell Sci 127:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Mayor J, Federico J-P, Campos PM, Murga C (2007) Interfering with MAP kinase docking interactions: implications and perspectives for the p38 route. Cell Cycle 6:528–533

    Article  CAS  PubMed  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Mikhailov A, Shinohara M, Rieder CL (2005) The p38-mediated stress-activated checkpoint: a rapid response system for delaying progression through antephase and entry into mitosis. Cell Cycle 4:57–62

    Article  CAS  PubMed  Google Scholar 

  • Miles EA, Zoubouli P, Calder PC (2005) Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition 21:389–394

    Article  CAS  PubMed  Google Scholar 

  • Min Y-D, Choi C-H, Bark H, Son H-Y, Park H-H, Lee S, Park J-W, Park E-K, Shin H-I, Kim S-H (2007) Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflamm Res 56:210–215

    Article  CAS  PubMed  Google Scholar 

  • Moon MK, Lee YJ, Kim JS, Kang DG, Lee HS (2009) Effect of caffeic acid on tumor necrosis factor-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Biol Pharm Bull 32:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, Kumazawa Y, Morikawa S (2003) Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 74:709–721

    Article  CAS  PubMed  Google Scholar 

  • Mozzicafreddo M, Cuccioloni M, Cecarini V, Eleuteri AM, Angeletti M (2009) Homology modeling and docking analysis of the interaction between polyphenols and mammalian 20S proteasomes. J Chem Inf Model 49:401–409

    Article  CAS  PubMed  Google Scholar 

  • Musti AM, Treier M, Bohmann D (1997) Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275:400–402

    Article  CAS  PubMed  Google Scholar 

  • Nafees S, Rashid S, Ali N, Hasan SK, Sultana S (2015) Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFκB/MAPK pathway. Chem Biol Interact 231:98–107

    Article  CAS  PubMed  Google Scholar 

  • Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R (2013) The MDM2-p53 pathway revisited. J Biomed Res 27:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol Biomark Prev 10:1083–1088

    CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Huang H-C, Yang CS, Pickett CB (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element: degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278:4536–4541

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Kataoka K, Goto N, FuJIWARA KT, Kawai S (1989) v-maf, a viral oncogene that encodes a" leucine zipper" motif. Proc Natl Acad Sci 86:7711–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh G, Pae H, Choi B, Lee H, Kim I, Yun Y, Kim J, Chung H (2004) Penta-O-galloyl-beta-d-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of intereukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int Immunopharmacol 4:377–386

    Article  CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Vree TB, Katan MB (2000) Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr 130:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discovery 5:549–563

    Article  CAS  PubMed  Google Scholar 

  • Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BM (2009) Tyrosine kinases and inflammatory signalling. Curr Mol Med 9:69–85

    Article  CAS  PubMed  Google Scholar 

  • Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999) Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286:1374–1377

    Article  PubMed  Google Scholar 

  • Pahwa R, Goyal A, Jialal I (2021) Chronic inflammation. StatPearls [Internet].

  • Pan M-H, Lai C-S, Wang Y-J, Ho C-T (2006) Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 72:1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Pan MH, Hsieh MC, Hsu PC, Ho SY, Lai CS, Wu H, Sang S, Ho CT (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res 52:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Park CM, Song Y-S (2013) Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nurs Res Pract 7:423–429

    CAS  Google Scholar 

  • Park SH, Kang JS, Yoon YD, Lee K, Kim KJ, Lee KH, Lee CW, Moon EY, Han SB, Kim BH (2010) Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-κB and AP-1. Phytother Res 24:S29–S34

    Article  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu B-e, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  • Pergola C, Rossi A, Dugo P, Cuzzocrea S, Sautebin L (2006) Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 15:30–39

    Article  CAS  PubMed  Google Scholar 

  • Potter K, Scrocchi L, Warnock G (2009) Biochimica et biophysica acta. Protein structure and molecular enzymology. Biochim Biophys Acta 1790:566–574

    Article  CAS  PubMed  Google Scholar 

  • Prestwich GD (2004) Phosphoinositide signaling: from affinity probes to pharmaceutical targets. Chem Biol 11:619–637

    Article  CAS  PubMed  Google Scholar 

  • Price MA, Rogers AE, Treisman R (1995) Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J 14:2589–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince PD, Fischerman L, Toblli JE, Fraga CG, Galleano M (2017) LPS-induced renal inflammation is prevented by (−)-epicatechin in rats. Redox Biol 11:342–349

    Article  CAS  PubMed  Google Scholar 

  • Proud CG (2010) mTORC1 and cell cycle control. In: The Enzymes. Elsevier, pp 129–146

  • Pullikuth AK, Catling AD (2007) Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell Signal 19:1621–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine (∗). J Biol Chem 270:7420–7426

    Article  CAS  PubMed  Google Scholar 

  • Raman M, Chen W, Cobb M (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Rashid M, Mazur T, Ji W, Liu S, Taylor W (2018) Analysis of the role of GSK3 in the mitotic checkpoint. Sci Rep 8:1–16

    Article  Google Scholar 

  • Reimold AM, Grusby MJ, Kosaras B, Fries JW, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265

    Article  CAS  PubMed  Google Scholar 

  • Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A (2010) Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 22:660–667

    Article  CAS  PubMed  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  CAS  PubMed  Google Scholar 

  • Rousseau S, Dolado I, Beardmore V, Shpiro N, Marquez R, Nebreda AR, Arthur JSC, Case LM, Tessier-Lavigne M, Gaestel M (2006) CXCL12 and C5a trigger cell migration via a PAK1/2-p38α MAPK-MAPKAP-K2-HSP27 pathway. Cell Signal 18:1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Rushmore TH, King RG, Paulson KE, Pickett CB (1990) Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci 87:3826–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF (2004) Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15:713–725

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25:5474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    Article  CAS  PubMed  Google Scholar 

  • Santangelo C, Varì R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R (2007) Polyphenols, intracellular signalling and inflammation. Annali-Istituto Superiore Di Sanita 43:394

    CAS  Google Scholar 

  • Scheline RR (1973) Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 25:451–523

    CAS  PubMed  Google Scholar 

  • Schmid-Schönbein GW (2006) Analysis of inflammation. Annu Rev Biomed Eng 8:93–151

    Article  PubMed  Google Scholar 

  • Sen CK, Packer L, Hänninen O (2000) Biological thiols and redox regulation of cellular signal transduction pathways. In: Handbook of oxidants and antioxidants in exercise Amsterdam, Elsevier, pp 375–401

  • Sharif O, Brunner JS, Vogel A, Schabbauer G (2019) Macrophage rewiring by nutrient associated PI3K dependent pathways. Front Immunol 10:2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AE, Bamburg JR (2017) Peptide regulation of cofilin activity in the CNS: a novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 175:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S-C, Lee W-R, Lin H-Y, Huang H-C, Ko C-H, Yang L-L, Chen Y-C (2002) In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production. Eur J Pharmacol 446:187–194

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Reis J, Morrison DC, Papasian C, Raghavakaimal S, Kolbert C, Qureshi AA, Vogel SN, Qureshi N (2006) Key inflammatory signaling pathways are regulated by the proteasome. Shock 25:472–484

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Tian P, Li D, Wu Y, Wan C, Yang T, Chen L, Wang T, Wen F (2015) Chrysin suppresses cigarette smoke-induced airway inflammation in mice. Int J Clin Exp Med 8:2001

    PubMed  PubMed Central  Google Scholar 

  • Shi X, Zheng Z, Li J, Xiao Z, Qi W, Zhang A, Wu Q, Fang Y (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–110

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Chen X, Liu J, Fan X, Jin Y, Gu J, Liang J, Liang X, Wang C (2021) Isoquercetin improves inflammatory response in rats following ischemic stroke. Front Neurosci 15:555543

    Article  PubMed  PubMed Central  Google Scholar 

  • Shichijo M, Yamamoto N, Tsujishita H, Kimata M, Nagai H, Kokubo T (2003) Inhibition of syk activity and degranulation of human mast cells by flavonoids. Biol Pharm Bull 26:1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natil Acad Sci 96:5522–5527

    Article  CAS  Google Scholar 

  • Smeal T, Hibi M, Karin M (1994) Altering the specificity of signal transduction cascades: positive regulation of c-Jun transcriptional activity by protein kinase A. EMBO J 13:6006–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son P-S, Park S-A, Na H-K, Jue D-M, Kim S, Surh Y-J (2010) Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKβ as a potential target. Carcinogenesis 31:1442–1449

    Article  CAS  PubMed  Google Scholar 

  • Stewart LK, Soileau JL, Ribnicky D, Wang ZQ, Raskin I, Poulev A, Majewski M, Cefalu WT, Gettys TW (2008) Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 57:S39–S46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh S-J, Chung T-W, Son M-J, Kim S-H, Moon TC, Son KH, Kim HP, Chang HW, Kim C-H (2006) The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-κB regulation, in RAW264. 7 cells. Arch Biochem Biophys 447:136–146

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radical Biol Med 21:335–348

    Article  CAS  Google Scholar 

  • Swaroop A, Xu J, Pawar H, Jackson A, Skolnick C, Agarwal N (1992) A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc Natl Acad Sci 89:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN (2004) Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res 153:181–188

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa S, Fujii M, Hou D-X (2007) Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radical Biol Med 42:1690–1703

    Article  CAS  Google Scholar 

  • Tee AR (2018) The target of rapamycin and mechanisms of cell growth. Int J Mol Sci 19:880

    Article  PubMed  PubMed Central  Google Scholar 

  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15:1419–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell 78:787–798

    Article  CAS  PubMed  Google Scholar 

  • Treisman R (1992) The serum response element. Trends Biochem Sci 17:423–426

    Article  CAS  PubMed  Google Scholar 

  • Treisman R (1994) Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev 4:96–101

    Article  CAS  PubMed  Google Scholar 

  • Tsurumi C, Ishida N, Tamura T, Kakizuka A, Nishida E, Okumura E, Kishimoto T, Inagaki M, Okazaki K, Sagata N (1995) Degradation of c-Fos by the 26S proteasome is accelerated by c-Jun and multiple protein kinases. Mol Cell Biol 15:5682–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valles SL, Dolz-Gaiton P, Gambini J, Borras C, Lloret A, Pallardo FV, Viña J (2010) Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res 1312:138–144

    Article  CAS  PubMed  Google Scholar 

  • Valsecchi AE, Franchi S, Panerai AE, Sacerdote P, Trovato AE, Colleoni M (2008) Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. J Neurochem 107:230–240

    Article  CAS  PubMed  Google Scholar 

  • Van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P (1995) ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J 14:1798–1811

    Article  PubMed  PubMed Central  Google Scholar 

  • van Meeteren ME, Hendriks JJ, Dijkstra CD, van Tol EA (2004) Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem Pharmacol 67:967–975

    Article  PubMed  Google Scholar 

  • Varì R, D’Archivio M, Filesi C, Carotenuto S, Scazzocchio B, Santangelo C, Giovannini C, Masella R (2011) Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J Nutr Biochem 22:409–417

    Article  PubMed  Google Scholar 

  • Vazquez Prieto MA, Bettaieb A, Rodriguez Lanzi C, Soto VC, Perdicaro DJ, Galmarini CR, Haj FG, Miatello RM, Oteiza PI (2015) Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Mol Nutr Food Res 59:622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R715

    Article  CAS  PubMed  Google Scholar 

  • Vogt PK, Bos TJ (1990) Jun: oncogene and transcription factor. Adv Cancer Res 55:1–35

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth TL, McDonald TL, Koop DR (2001) Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-α. Biochem Pharmacol 62:963–974

    Article  CAS  PubMed  Google Scholar 

  • Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li C, Sreeharsha N, Mishra A, Shrotriya V, Sharma A (2020) Neuroprotective effect of Wogonin on Rat’s brain exposed to gamma irradiation. J Photochem Photobiol B 204:111775

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW (2004) O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 279:38466–38470

    Article  CAS  PubMed  Google Scholar 

  • Weng M-S, Ho Y-S, Lin J-K (2005) Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol 69:1815–1827

    Article  CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ (1995) Integration of MAP kinase signal transduction pathways at the serum response element. Science 269:403–407

    Article  CAS  PubMed  Google Scholar 

  • Woo KJ, Lim JH, Suh S-I, Kwon Y-K, Shin S-W, Kim S-C, Choi YH, Park J-W, Kwon TK (2006) Differential inhibitory effects of baicalein and baicalin on LPS-induced cyclooxygenase-2 expression through inhibition of C/EBPβ DNA-binding activity. Immunobiology 211:359–368

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168

    Article  CAS  PubMed  Google Scholar 

  • Xagorari A, Roussos C, Papapetropoulos A (2002) Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 136:1058–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C-Q, Liu B-J, Wu J-F, Xu Y-C, Duan X-H, Cao Y-X, Dong J-C (2010) Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-κB signaling pathway. Eur J Pharmacol 642:146–153

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Chen L, Xiao J, Wang C, Jiang W, Zhang R, Hao J (2014) Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int J Mol Sci 15:20913–20926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Sun J, Wei J, Zhang X, Chen B, Lin Y (2020) Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front Pharmacol 11:1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Zhang X, Xu Y, Zhao Y, Song F, Tian Z, Zhao M, Liang Y, Ling W, Mao Y-H (2022) Cyanidin-3-O-β-glucoside attenuates platelet chemokines and their receptors in atherosclerotic inflammation of ApoE–/–mice. J Agric Food Chem 70:8254–8263

    Article  CAS  PubMed  Google Scholar 

  • Ye N, Ding Y, Wild C, Shen Q, Zhou J (2014) Small molecule inhibitors targeting activator protein 1 (AP-1) miniperspective. J Med Chem 57:6930–6948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon J-H, Baek SJ (2005) Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 46:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim KA, McDonald J, Kalt W, Joseph JA (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J Nutr Biochem 13:282–288

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23:883–892

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6:347–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerial M, Toschi L, Ryseck R, Schuermann M, Müller R, Bravo R (1989) The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J 8:805–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lian F, Zhu Y, Xia M, Wang Q, Ling W, Wang X-D (2010) Cyanidin-3-O-β-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IκBα phosphorylation in THP-1 cells. Inflamm Res 59:723–730

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta (BBA) Mol Cell Res 1813:1978–1986

  • Zhang J-X, Xing J-G, Wang L-L, Jiang H-L, Guo S-L, Liu R (2017a) Luteolin inhibits fibrillary β-Amyloid1–40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-κB signaling pathways. Molecules 22:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang Y, Xiao C, Wei Z, Wang J, Yang Z, Fu Y (2017b) Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway. Microb Pathog 107:462–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q-Y, Wang F-X, Jia K-K, Kong L-D (2018) Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front Pharmacol 9:1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Wang L, Liu K (2009) In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 122:457–462

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Dang Y, Zhang R, Jing G, Liang W, Li Z (2019) Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: involved of inactivation of the TLR4/NF-κB signaling pathway. Int Immunopharmacol 75:105697

    Article  CAS  PubMed  Google Scholar 

  • Ziff EB (1990) Transcription factors: a new family gathers at the cAMP response site. Trends Genet 6:69–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Institute for providing an excellent support to complete this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SP: writing original draft and preparation of figures. VK: writing—review and editing, and reference. CS: critically review and editing. AS: conceptualization, supervision, critically review and editing.

Corresponding author

Correspondence to Arti Singh.

Ethics declarations

Conflict of interest

The authors of this article certify that they had no financial or personal stake in the results of this study and that they have received no significant funding for this work that may potentially bias their findings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Kumar, V., Singh, C. et al. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacol 31, 1117–1147 (2023). https://doi.org/10.1007/s10787-023-01206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01206-z

Keywords

Navigation