Skip to main content

Advertisement

Log in

Proteasome inhibition: a new anti-inflammatory strategy

  • Invited review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies in numerous animal models for a variety of human diseases including cancer, reperfusion injury, and inflammatory conditions such as rheumatoid arthritis, asthma, multiple sclerosis, and psoriasis. Two proteasome inhibitors, each representing a unique chemical class, are currently under clinical evaluation. Velcade (PS-341) is currently being evaluated in multiple phase II clinical trials for several solid tumor indications and has just entered a phase III trial for multiple myeloma. PS-519, representing another class of inhibitors, focuses on the inflammatory events following ischemia and reperfusion injury. Since proteasome inhibitors exhibit anti-inflammatory and antiproliferative effects, diseases characterized by both of these processes simultaneously, as is the case in rheumatoid arthritis or psoriasis, might also represent clinical opportunities for such drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

CLA :

Cutaneous lymphocyte-associated antigen

EAE :

Experimental autoimmune encephalomyelitis

IκB :

Nuclear factor κB inhibitor

IL :

Interleukin

NF-κB :

Nuclear factor κB

TNF :

Tumor necrosis factor

References

  1. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 24:7151–7160

    Article  Google Scholar 

  2. Peters JM, Harris JR, Finley D (eds) (1998) Ubiquitin and the biology of the cell. Plenum, New York

  3. Rivett AJ (1993) Proteasomes: multicatalytic proteinase complexes. Biochem J 291:1–10

    PubMed  Google Scholar 

  4. Goldberg AL, Stein R, Adams J (1995) New insights into proteasome function: from archaebacteria to drug development. Chem Biol 2:503–508

    PubMed  Google Scholar 

  5. Hershko A (1997) Roles of ubiquitin-mediated proteolysis in cell cycle control Curr Opin Cell Biol 9:788–799

    Article  Google Scholar 

  6. Epinat JC, Gilmore TD (1999) Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway. Oncogene 18:6896–6909

    Article  PubMed  Google Scholar 

  7. Myung J, Kim KB, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21:245–273

    Article  PubMed  Google Scholar 

  8. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758

    Article  PubMed  Google Scholar 

  9. Bogyo M, Wang EW (2002) Proteasome inhibitors: complex tools for a complex enzyme. Curr Top Microbiol Immunol 268:185–208

    PubMed  Google Scholar 

  10. Vinitsky A, Michaud C, Powers JC, Orlowski M (1992) Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31:9421–9428

    PubMed  Google Scholar 

  11. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785

    PubMed  Google Scholar 

  12. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    CAS  PubMed  Google Scholar 

  13. Tsubuki S, Saito Y, Tomioka M, Ito H, Kawashima S (1996) Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem (Tokyo) 119:572–576

    Google Scholar 

  14. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338

    Article  PubMed  Google Scholar 

  15. Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116:637–646

    PubMed  Google Scholar 

  16. Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7:9–16

    CAS  Google Scholar 

  17. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  18. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The Proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    PubMed  Google Scholar 

  19. Aghajanian C, Soignet S, Dizon DS, PienCS, AdamsJ, Elliott PJ, Sabbattini P, Miller V, Hensley ML, Pezzulli S, Canales CA, Dauda A, Spriggs DR (2002) A phase I trial of the novel proteasome inhibitor PS-341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2011

    PubMed  Google Scholar 

  20. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine D-L, Elliott PJ, Pien CS, Guerciolini R, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O'Connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    Article  PubMed  Google Scholar 

  21. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731

    CAS  PubMed  Google Scholar 

  22. Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin. J Biol Chem 271:7273–7276

    CAS  PubMed  Google Scholar 

  23. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188

    Article  PubMed  Google Scholar 

  24. Ostrowska H, Wojcik C, Omura S, Worowski K (1997) Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem Biophys Res Commun 234:729–732

    Article  CAS  PubMed  Google Scholar 

  25. Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, Eichmann K, Niedermann G (1999) A giant protease with potential to substitute for some functions of the proteasome. Science 283:978–981

    Article  CAS  PubMed  Google Scholar 

  26. Soucy F, Grenier L, Behnke ML, Destree AT, McCormack TA, Adams J, Plamondon L (1999) A novel and efficient synthesis of a highly active analogue of clasto-lactacystin b-lactone. J Am Chem Soc 121:9967–9976

    Article  Google Scholar 

  27. Groll M, Kim KB, Kairies N, Huber R, Crews CM (2000) Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of a',b'-epoxoketone proteasome inhibitors. J Am Chem Soc 122:1237–1238

    Article  Google Scholar 

  28. Meng L, Mohan R, Kwok BHB, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408

    Article  PubMed  Google Scholar 

  29. Furet P, Imbach P, Furst P, Lang M, Noorani M, Zimmermann J, Garcia-Echeverria C (2001) Modeling of the binding mode of a non-covalent inhibitor of the 20S proteasome. Application to structure-based analogue design. Bioorg Med Chem Lett 11:1321–1324

    Article  PubMed  Google Scholar 

  30. Furet P, Imbach P, Fuerst P, Lang M, Noorani M, Zimmermann J, Garcia-Echeverria C (2002) Structure-based optimisation of 2-aminobenzylstatine derivatives: potent and selective inhibitors of the chymotrypsin-Like activity of the human 20S proteasome. Bioorg Med Chem Lett 12:1331–1334

    Article  PubMed  Google Scholar 

  31. Garcia-Echeverria C, Imbach P, France D, Furst P, Lang M, Noorani AM, Scholz D, Zimmermann J, Furet P (2001) A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome. Bioorg Med Chem Lett 11:1317–1319

    Article  PubMed  Google Scholar 

  32. Lin ZP, Boller YC, Am SM, et al (1998) Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-kappa B activation in drug resistance. Cancer Res 58:3059–3065

    PubMed  Google Scholar 

  33. Wang C-Y, Cusack JC, Liu R, et al (1999) Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF-kappa B. Nat Med 5:412–417

    Article  PubMed  Google Scholar 

  34. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible role of NF-kappa B in the resolution of inflammation. Nat Med 7:1291–1297

    Article  PubMed  Google Scholar 

  35. Cheason BD (2002) Hematologic malignancies: new developments and future treatments. Semin Oncol 29:33–45

    Article  Google Scholar 

  36. Almond JB, Cohen GM (2002) The proteasome: a novel target for cancer chemotherapy. Leukemia 16:433–443

    Google Scholar 

  37. Jain KK (2000) Neuroprotection in cerebrovascular disease. Expert Opin Investig Drugs 9:695–711

    PubMed  Google Scholar 

  38. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179–:1–33

  39. Carroll JE, Hess DC, Howard EF, Hill WD (2000) Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport 11:R1–R4

    PubMed  Google Scholar 

  40. Phillips JB, Williams AJ, Adams J, Elliott PJ, Tortella FC (2000) Proteasome inhibitor PS-519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31:1686–1693

    PubMed  Google Scholar 

  41. Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, Yao C, Dave JR, Tortella FC (2002) Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 22:1068–1079

    PubMed  Google Scholar 

  42. Buchan AM, Li H, Blackburn B (1999) Neuroprotection achieved with a novel proteasome inhibitor which blocks NF-κB activation. Neuroreport 11:427–430

    Google Scholar 

  43. Zhang L, Zhang ZG, Zhang RL, Chopp M, Adams J, Elliott PJ (2001) Postischemic (6 h) treatment with rht-PA and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke 32:2926–2931

    PubMed  Google Scholar 

  44. Campbell B, Adams J, Shin YK, Lever AM (1999) Cardioprotective effects of a novel proteasome inhibitor following ischemia and reperfusion in the isolated perfused rat heart. J Mol Cell Cardiol 31:467–476

    Article  PubMed  Google Scholar 

  45. Pye JP, Ardeshirpour F, McCain A, Bellinger DD, Merricks E, Adams J, Elliott PJ, Pien C, Fischer TH, Baldwin AS, Nichols TC (2002) Proteasome inhibition ablates activation of NF-kappaB induced during myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol (in press)

  46. Bao J, Sato K, Li M, Gao Y, Abid R, Aird W, Simons M, Post MJ (2001) PR-39 and PR-11 peptides inhibit ischemia-reperfusion injury by blocking proteasome-mediated I kappa B alpha degradation. Am J Physiol Heart Circ Physiol 281:H2612–H2618

    PubMed  Google Scholar 

  47. Baldwin AS (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  PubMed  Google Scholar 

  48. Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS, Wolf RE, Huang J, Brand S, Elliott PJ, Lazarus D, McCormack T, Parent L, Stein R, Adams J, Grisham MB (1998) Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95:15671–15676

    CAS  PubMed  Google Scholar 

  49. Cromartie WJ, Craddock JC, Schwab JH, Anderie SK, Yang CH (1977) Arthritis in rats after systemic injection of streptococcal cells or cell walls. J Exp Med 146:1585–1602

    PubMed  Google Scholar 

  50. Migita K, Tanaka F, Yamasaki S, Shibatomi K, Ida H, Kawakami A, Aoyagi T, Kawabe Y, Eguchi K (2001) Regulation of rheumatoid synoviocyte proliferation by endogenous p53 induction. Clin Exp Immunol 126:334–338

    Article  PubMed  Google Scholar 

  51. Busse WW (1998) Inflammation in asthma: the cornerstone of the disease and target of therapy. J Allergy Clin Immunol 102:S17–S22

    PubMed  Google Scholar 

  52. Montefort S, Holgate ST, Howarth PH (1993) Leukocyte-endothelial adhesion molecules and their role in bronchial asthma and allergic rhinitis. Eur Respir J 6:1044–1054

    PubMed  Google Scholar 

  53. Fujihara S, Ward C, Dransfield I, Hay RT, Uings IJ, Hayes B, Farrow SN, Haslett C, Rossi AG (2002) Inhibition of nuclear factor-kappaB activation un-masks the ability of TNF-alpha to induce human eosinophil apoptosis. Eur J Immunol 32:457–466

    Article  PubMed  Google Scholar 

  54. Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999) Proteasome inhibition: a novel mechanism to combat asthma. J Allergy Clin Immunol 104:294–300

    PubMed  Google Scholar 

  55. Paterson PY, Swanborg RH (1988) Demyelinating diseases of the central nervous systems. In: Sampter M, Talmage DW, Frank MM, Austen KF, Claman HN (eds) Immunological diseases. Little Brown, Boston, pp 1877–1916

  56. Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Cano MC, Miller SD (2000) Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmunol 14:205–211

    Article  Google Scholar 

  57. McRea BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    CAS  PubMed  Google Scholar 

  58. Hosseini H, Andre P, Lefevre N, Viala L, Walzer T, Peschanski M, Lotteau V (2001) Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J Neuroimmunol 30:233–244

    Article  Google Scholar 

  59. Valdimarsson H, Baker BS, Jonsdottir I, Powles A, Fry L (1996) Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunol Today 16:145–149

    Google Scholar 

  60. Boehncke W-H (1996) Psoriasis and bacterial superantigens: formal or causal correlation? Trends Microbiol 4:485–48968

    Article  PubMed  Google Scholar 

  61. Robert C, Kupper TS (1999) Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 341:1817–1828

    Article  PubMed  Google Scholar 

  62. Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke W-H (2002) Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest 109:671–679

    Article  PubMed  Google Scholar 

  63. Boehncke W-H, Sterry W, Hainzl A, Scheffold W, Kaufmann R (1994) Psoriasiform architecture of murine epidermis overlying human psoriatic dermis transplanted onto SCID mice. Arch Dermatol Res 286:325–330

    PubMed  Google Scholar 

  64. Nickoloff BJ, Kunkel SL, Burdick M, Strieter RM (1995) Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model. Am J Pathol 146:580–588

    PubMed  Google Scholar 

  65. Boehncke W-H, Kock M, Hardt-Weinelt K, Wolter M, Kaufmann R (1999) The SCID-hu xenogeneic transplantation model allows screening of anti-psoriatic drugs. Arch Dermatol Res 291:104–106

    Article  PubMed  Google Scholar 

  66. Dam TM, Kang S, Nickoloff BJ, Voorhees JJ (1999) 1a,25-Dihydroxycholecalciferol and cyclosporine suppress induction and promote resolution of psoriasis in human skin grafts transplanted onto SCID mice. J Invest Dermatol 113:1082–1089

    Article  PubMed  Google Scholar 

  67. Goldberg AL, Rock K (2002) Not just research tools—proteasome inhibitors offer therapeutic promise. Nat Med 8:338–340

    Article  PubMed  Google Scholar 

  68. Honda T, Yasutake K, Nihonmatsu N, Mercken M, Takahashi H, Murayama O, Murayama M, Sato K, Omori A, Tsubuki S, Saido TC, Takashima A (1999) Dual roles of proteasome in the metabolism of presenilin 1. J Neurochem 72:255–261

    Article  PubMed  Google Scholar 

  69. Hoffman EK, Wilcox HM, Scott RW, Siman R (1996) Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J Neurol Sc 139:15–20

    Article  Google Scholar 

  70. Vives-Pi M, Vargas F, James RFL, Trowsdale J, Costa M, Sospedra M, Somoza N, Obiols G, Tampe R, Pujol-Borelli R (1997) Proteasome subunits, low-molecular-mass polypeptides 2 and 7 are hyperexpressed by target cells in autoimmune thyroid disease but not in insulin-dependent diabetes mellitus: implications for autoimmunity. Tissue Antigens 50:153–163

    PubMed  Google Scholar 

  71. Lazarus DD, Destree AT, Mazzola LM, McCormack TA, Dick LR, Xu B, Huang JQ, Pierce JW, Read MA, Coggins MB, Solomon V, Goldberg AL, Brand SJ, Elliott PJ (1999) A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. Am J Physiol 277:332–341

    Google Scholar 

  72. Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ (2001) Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 61:3604–3609

    CAS  PubMed  Google Scholar 

  73. Groettrup M, Schmidtke G (1999) Selective proteasome inhibitors: modulators of antigen presentation? DDT 4:63–70

    Article  PubMed  Google Scholar 

  74. Sirma H, Weil R, Rosmorduc O, Urban S, Israel A, Kremsdorf D, Brechot C (1998) Cytosol is the prime compartment of hepatitis B virus X protein where it colocalizes with the proteasome. Oncogene 16:2051–2063

    Google Scholar 

  75. Robek MD, Wieland SF, Chisari FV (2002) Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J Virol 76:3570–3574

    Article  PubMed  Google Scholar 

  76. Conner EM, Brand SJ, Davis JM, Kang DY, Grisham MB (1996) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: toxins, mediators, and modulators of gene expression. Inflamm Bowel Dis 2:133–147

    Google Scholar 

  77. Conner EM, Brand S, Davis JM, Laroux FS, Palombella VJ, Fuseler JW, Kang DY, Wolf RE, Grisham MB (1997) Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis. J Pharmacol Exp Ther 282:1615–1622

    PubMed  Google Scholar 

  78. Dijkstra G, Moshage H, Jansen PL (2002) Blockade of NF-kappaB activation and donation of nitric oxide: new treatment options in inflammatory bowel disease? Scand J Gastroenterol Suppl 236:37–41

    Article  PubMed  Google Scholar 

  79. Hasselgren PO, Fischer JE (1997) The ubiquitin-proteasome pathway: review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions. Ann Surg 225:307–316

    Article  PubMed  Google Scholar 

  80. Snyder JG, Prewitt R, Campsen J, Britt LD (2002) PDTC and MG-132, inhibitors of NF-kappaB, block endotoxin induced vasodilatation of isolated rat skeletal muscle arterioles. Shock 17:304–307

    PubMed  Google Scholar 

  81. Feist E, Dorner T, Kuckelkorn U, Schmidtke G, Micheel B, Hiepe F, Burmester GR, Kloetzel PM (1996) Proteasome a-type subunit C9 is a primary target of autoantibodies in sera of patients with myositis and systemic lupus erythematosus. J Exp Med 10:1313–1318

    Google Scholar 

  82. Elofsson M, Splittgerber U, Myung J, Mohan R, Crews CM (1999) Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide alpha, "beta"-epoxyketones. Chem Biol 6:811–822

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Henning Boehncke.

Additional information

All authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, P.J., Zollner, T.M. & Boehncke, WH. Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 81, 235–245 (2003). https://doi.org/10.1007/s00109-003-0422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0422-2

Keywords

Navigation