Skip to main content

Advertisement

Log in

A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 1863:585–597

    Article  CAS  PubMed  Google Scholar 

  • Ajibade TO, Oyagbemi AA, Omobowale TO, Asenuga ER, Adigun KO (2017) Quercetin and vitamin C mitigate cobalt chloride-induced hypertension through reduction in oxidative stress and nuclear factor kappa beta (NF-Kb) expression in experimental rat model. Biol Trace Elem Res 175:347–359

    Article  CAS  PubMed  Google Scholar 

  • Akbari G, Mard SA, Dianat M, Mansouri E (2017) The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid Med Cell Longev 2017:1702967

    Article  PubMed  PubMed Central  Google Scholar 

  • Albadrani GM, BinMowyna MN, Bin-Jumah MN, El–Akabawy G, Aldera H, Al-Farga AM, (2021) Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: different mechanisms of action. Saudi J Biol Sci 28:2772–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algandaby MM (2018) Antifibrotic effects of crocin on thioacetamide-induced liver fibrosis in mice. Saudi J Biol Sci 25:747–754

    Article  CAS  PubMed  Google Scholar 

  • Alhusaini A, Fadda LM, Ali HM, Hasan IH, Ali RA, Zakaria EA (2019) Mitigation of acetamiprid—induced renotoxicity by natural antioxidants via the regulation of ICAM, NF-kB and TLR 4 pathways. Pharmacol Rep 71:1088–1094

    Article  CAS  PubMed  Google Scholar 

  • Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6076–6093

    Article  CAS  PubMed  Google Scholar 

  • Alicezah M, Rahman T, Froemming G, Ahmad R, Nawawi H (2014) Crocin reducing NF-KB in stimulated human coronary artery endothelial cells. Clin Chem Lab Med 52:S248–S276

    Google Scholar 

  • Alshammari GM, Al-Qahtani WH, AlFaris NA, Albekairi NA, Alqahtani S, Eid R, Yagoub AEA, Al-Harbi LN, Yahya MA (2021a) Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α. Biomed Pharmacother 141:111862

    Article  CAS  PubMed  Google Scholar 

  • Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA (2021b) Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 86:104675

    Article  CAS  Google Scholar 

  • Alshehri A, El-Kott A, Eleawa S, El-Gerbed M, Khalifa H, El-Kenawy A, Albadrani G, Abdel-Daim M (2021) Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating SIRT1. J Physiol Pharmacol 72

  • Alshehri AS, El-Kott AF, El-Kenawy AE, Zaki MSA, Morsy K, Ghanem RA, Salem ET, Ebealy ER, Khalifa HS, Altyar AE (2022) The ameliorative effect of kaempferol against CdCl2-mediated renal damage entails activation of Nrf2 and inhibition of NF-kB. Environ Sci Pollut Res 29:57591–57602

    Article  CAS  Google Scholar 

  • Amin B, Abnous K, Motamedshariaty V, Hosseinzadeh H (2014) Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An Acad Bras Cienc 86:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Amin B, Hosseinzadeh H (2015) Analgesic and anti-inflammatory effects of Crocus sativus L. (saffron). In: Watson RR, Preedy VR (eds) Bioactive nutraceuticals and dietary supplements in neurological and brain disease. Elsevier, Amsterdam, pp 319–324

    Chapter  Google Scholar 

  • Ardalan T, Ardalan P, Heravi M (2012) Kinetic study of free radicals scavenging by saffron petal extracts. J Chem Health Risks 2:29–36

    Google Scholar 

  • Asai A, Nakano T, Takahashi M, Nagao A (2005) Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem 53:7302–7306

    Article  CAS  PubMed  Google Scholar 

  • Asdaq SMB, Inamdar MN (2010) Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol 162:358–372

    Article  CAS  PubMed  Google Scholar 

  • Asgarpanah J, Darabi-Mahboub E, Mahboubi A, Mehrab R, Hakemivala M (2013) In-vitro evaluation of Crocus sativus L. petals and stamens as natural antibacterial agents against food-borne bacterial strains. Iran J Pharm Res 9:69–82

    Google Scholar 

  • Ashari S, Karami M, Shokrzadeh M, Bagheri A, Ghandadi M, Ranaee M, Dashti A, Mohammadi H (2022) Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway. Toxicol Res 11:272–285

    Article  Google Scholar 

  • Assimopoulou A, Sinakos Z, Papageorgiou V (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytothe Res 19:997–1000

    Article  CAS  Google Scholar 

  • Bahar E, Kim J-Y, Yoon H (2017) Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int J Mol Sci 18:1989

    Article  PubMed  PubMed Central  Google Scholar 

  • Balarastaghi S, Yazdian-Robati R, Hasani FV, Hosseinzadeh H, Abnous K, Imenshahidi M, Mohammadzadeh L, Birner-Gruenberger R, Razavi BM (2021) Protective effect of crocin on malathion-induced cardiotoxicity in rats: a biochemical, histopathological and proteomics study. Iran J Pharm Res 20:156–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar S, Sudhakaran P, Helen A (2016) Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol 310:131–140

    Article  CAS  PubMed  Google Scholar 

  • BinMowyna MN, AlFaris NA (2021) Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm Biol 59:144–154

    Article  Google Scholar 

  • Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, Bast A, Rosenbruch M, Jonkers L, van Schooten FJ, Schins RPF (2020) The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 20:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghi SM, Pinho-Ribeiro FA, Fattori V, Bussmann AJ, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA Jr (2016) Quercetin inhibits peripheral and spinal cord nociceptive mechanisms to reduce intense acute swimming-induced muscle pain in mice. PLoS ONE 11:e0162267

    Article  PubMed  PubMed Central  Google Scholar 

  • Boskabady M, Rahbardar MG, Nemati H, Esmaeilzadeh M (2010) Inhibitory effect of Crocus sativus (saffron) on histamine (H1) receptors of guinea pig tracheal chains. Pharmazie 65:300–305

    CAS  PubMed  Google Scholar 

  • Boskabady MH, Rahbardar MG, Jafari Z (2011) The effect of safranal on histamine (H1) receptors of guinea pig tracheal chains. Fitoterapia 82:162–167

    Article  CAS  PubMed  Google Scholar 

  • Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya KJOm, longevity c (2022) The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev 2022: 8214821

  • Canning P, Sorrell FJ, Bullock AN (2015) Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med 88:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X (2020) Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine 99:e22241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Qian J, Wang L, Li J, Zhao Y, Han J, Khan Z, Chen X, Wang J, Liang G (2018) Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 60:83–94

    Article  CAS  PubMed  Google Scholar 

  • Cho Y-S, Kim CH, Ha T-S, Ahn HY (2016) Inhibition of NF-kB and STAT3 by quercetin with suppression of adhesion molecule expression in vascular endothelial cells. Farmacia 64:668–673

    CAS  Google Scholar 

  • Crespo I, Garcia-Mediavilla MV, Gutiérrez B, Sánchez-Campos S, Tunon MJ, González-Gallego J (2008) A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr 100:968–976

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Zhang Q, Shen L, Sharma G, Jiang H, Wang Z, Shen J (2022) Quercetin attenuates quinocetone-induced cell apoptosis in vitro by activating the P38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Antioxidants 11:1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KJ, Forman HJ (2019) Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med 134:708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dianat M, Radan M, Badavi M, Mard SA, Bayati V, Ahmadizadeh M (2018) Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 19:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Du J, Chi Y, Song Z, Di Q, Mai Z, Shi J, Li M (2018) Crocin reduces Aspergillus fumigatus-induced airway inflammation and NF-κB signal activation. J Cell Biochem 119:1746–1754

    Article  CAS  PubMed  Google Scholar 

  • Du Y-C, Lai L, Zhang H, Zhong F-R, Cheng H-L, Qian B-L, Tan P, Xia X-M, Fu W-G (2020) Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct 11:7925–7934

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Han J, Zhang H, Xu J, Jiang L, Ge W (2019) Kaempferol prevents against ang II-induced cardiac remodeling through attenuating ang II-induced inflammation and oxidative stress. J Cardiovasc Pharmacol 74:326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kott AF, Bin-Meferij MM, Eleawa SM, Alshehri MM (2020) Kaempferol protects against cadmium chloride-induced memory loss and hippocampal apoptosis by increased intracellular glutathione stores and activation of PTEN/AMPK induced inhibition of Akt/mTOR signaling. Neurochem Res 45:295–309

    Article  CAS  PubMed  Google Scholar 

  • Elsherbiny NM, Eisa NH, El-Sherbiny M, Said E (2020) Chemo-preventive effect of crocin against experimentally-induced hepatocarcinogenesis via regulation of apoptotic and Nrf2 signaling pathways. Environ Toxicol Pharmacol 80:103494

    Article  CAS  PubMed  Google Scholar 

  • Fahim NK, Janati S, Feizy J (2012) Chemical composition of agriproduct saffron (Crocus sativus L.) petals and its considerations as animal feed. GIAD J Food 37:197–201

    Google Scholar 

  • Fatehi M, Rashidabady T, Fatehi-Hassanabad Z (2003) Effects of Crocus sativus petals’ extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J Ethnopharmacol 84:199–203

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Wang C, Yue J, Meng Q, Wu J, Sun H (2021) Kaempferol-induced GPER upregulation attenuates atherosclerosis via the PI3K/AKT/Nrf2 pathway. Pharm Biol 59:1104–1114

    Article  PubMed Central  Google Scholar 

  • Gao J, Zhao F, Yi S, Li S, Zhu A, Tang Y, Li A (2022) Protective role of crocin against sepsis-induced injury in the liver, kidney and lungs via inhibition of p38 MAPK/NF-κB and Bax/Bcl-2 signalling pathways. Pharm Biol 60:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi T, Abnous K, Vahdati F, Mehri S, Razavi B, Hosseinzadeh H (2015) Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug Res 65:337–343

    CAS  Google Scholar 

  • Ghobadi H, Abdollahi N, Madani H, Aslani MR (2022) Effect of crocin from saffron (Crocus sativus L.) supplementation on oxidant/antioxidant markers, exercise capacity, and pulmonary function tests in COPD patients: a randomized, double-blind, placebo-controlled trial. Front Pharmacol 13:884710

  • Giridharan S, Srinivasan M (2018) Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 2018:407–419

    Article  Google Scholar 

  • Goli SAH, Mokhtari F, Rahimmalek M (2012) Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. J Agric Sci 4:175–181

    Google Scholar 

  • Granado-Serrano AB, Martín MÁ, Bravo L, Goya L, Ramos S (2012) Quercetin attenuates TNF-induced inflammation in hepatic cells by inhibiting the NF-κB pathway. Nutr Cancer 64:588–598

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Wang J, Wu X, Song L, Wang Y, Gong M, Li B (2021) Quercetin reverses chronic unpredictable mild stress-induced depression-like behavior in vivo by involving nuclear factor-E2-related factor 2. Brain Res 1772:147661

    Article  CAS  PubMed  Google Scholar 

  • Hadizadeh F, Khalili N, Hosseinzadeh H, Khair-Aldine R (2003) Kaempferol from saffron petals. Iran J Pharm Res 2:251–252

    CAS  Google Scholar 

  • Han S, Song R, Cao Y, Yan X, Gao H, Lian F (2022) Crocin mitigates atherosclerotic progression in LDLR knockout mice by hepatic oxidative stress and inflammatory reaction reduction, and intestinal barrier improvement and gut microbiota modulation. J Funct Foods 96:105221

    Article  CAS  Google Scholar 

  • Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218

    Article  CAS  PubMed  Google Scholar 

  • Heidari S, Mehri S, Hosseinzadeh H (2017) Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran J Basic Med Sci 20:1250–1259

    PubMed  PubMed Central  Google Scholar 

  • Hoshyar R, Hosseinian M, Rajabian Naghandar M, Hemmati M, Zarban A, Amini Z, Valavi M, Zare Beyki M, Mehrpour O (2016) Anti-dyslipidemic properties of saffron: reduction in the associated risks of atherosclerosis and insulin resistance. Iran Red Crescent Med J 18:e36226

    Article  Google Scholar 

  • Hosseini A, Razavi BM, Hosseinzadeh H (2018) Saffron (Crocus sativus) petal as a new pharmacological target: a review. Iran J Basic Med Sci 21:1091–1099

    PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh H, Abootorabi A, Sadeghnia HR (2008) Protective effect of Crocus sativus stigma extract and crocin (trans-crocin 4) on methyl methanesulfonate–induced DNA damage in mice organs. DNA Cell Biol 27:657–664

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Behravan J, Ramezani M, Ajgan K (2005) Anti-tumor and cytotoxic evaluation of Crocus sativus L. stigma and petal extracts using brine shrimp and potato disc assays. J Med Plants 4:59–65

    Google Scholar 

  • Hosseinzadeh H, Ghenaati J (2006) Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia 77:446–448

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. J Med Plants 3:48–58

    Google Scholar 

  • Hosseinzadeh H, Khosravan V (2002) Anticonvulsant effects of aqueous ana ethanolic extracts of Crocus sativus L stigmas in mice. Arch Iran Med 5:44–47

    Google Scholar 

  • Hosseinzadeh H, Modaghegh MH, Saffari Z (2009) Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complement Alternat Med 6:343–350

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M (2013) Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res 27:475–483

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Noraei NB (2009) Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 23:768–774

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Shariaty VM (2007) Anti-nociceptive effect of safranal, a constituent of Crocus sativus (saffron), in mice. Pharmacologyonline 2:498–503

    Google Scholar 

  • Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2:7

  • Hsiao H-B, Wu J-B, Lin H, Lin W-C (2011) Kinsenoside isolated from Anoectochilus formosanus suppresses LPS-stimulated inflammatory reactions in macrophages and endotoxin shock in mice. Shock 35:184–190

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Nan C, Wang H, Su Q, Xue W, Chen Y, Shan X, Duan J, Chen G, Tao W (2016) Crocetin ester improves myocardial ischemia via Rho/ROCK/NF-κB pathway. Int Immunopharmacol 38:186–193

    Article  PubMed  Google Scholar 

  • Hussain MA, Abogresha NM, AbdelKader G, Hassan R, Abdelaziz EZ, Greish SM (2021) Antioxidant and anti-inflammatory effects of crocin ameliorate doxorubicin-induced nephrotoxicity in rats. Oxid Med Cell Longev 2021:8841726

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein RM, Mohamed WR, Omar HA (2018) A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pestic Biochem Phys 152:29–37

    Article  CAS  Google Scholar 

  • Imenshahidi M, Hosseinzadeh H, Javadpour Y (2010) Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 24:990–994

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka F, Shimazawa M, Umigai N, Ogishima H, Nakamura S, Tsuruma K, Hara H (2013) Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. Eur J Pharmacol 703:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jacob V, Hagai T, Soliman K (2011) Structure-activity relationships of flavonoids. Curr Org Chem 15:2641–2657

    Article  CAS  Google Scholar 

  • Kazmi I, Al-Abbasi FA, Afzal M, Altayb HN, Nadeem MS, Gupta G (2021) Formulation and evaluation of kaempferol loaded nanoparticles against experimentally induced hepatocellular carcinoma: in vitro and in vivo studies. Pharmaceutics 13:2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO (2018) Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 9:1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Ali T, Kim MW, Jo MH, Chung JI, Kim MO (2019) Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molr Neurobiol 56:671–687

    Article  CAS  Google Scholar 

  • Khazaei KM, Jafari S, Ghorbani M, Kakhki AH, Sarfarazi M (2016) Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Anal Methods 9:1993–2001

    Article  Google Scholar 

  • Khoshandam A, Razavi BM, Hosseinzadeh H (2022) Interaction of saffron and its constituents with Nrf2 signaling pathway: a review. Iran J Basic Med Sci 25:789–798

    PubMed  PubMed Central  Google Scholar 

  • Kiashemshaki B, Safakhah H-A, Ghanbari A, Khaleghian A, Miladi-Gorji H (2021) Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. Am J Drug Alcohol Abuse 47:170–181

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem Pharmacol 58:759–765

    Article  CAS  PubMed  Google Scholar 

  • Krajka-Kuźniak V, Baer-Dubowska W (2021) Modulation of Nrf2 and NF-κB signaling pathways by naturally occurring compounds in relation to cancer prevention and therapy. Are combinations better than single compounds? Int J Mol Sci 22:8223

  • Le K, Song Z, Deng J, Peng X, Zhang J, Wang L, Zhou L, Bi H, Liao Z, Feng Z (2020) Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm Res 69:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-J, Beak S-Y, Choi I, Sung J-S (2018) Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci Biotechnol 27:809–817

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-J, Song J-H, Oh M-H, Lee Y-J, Kim Y-B, Im J-H, Lee S-H (2011) ERK1/2 activation in quercetin-treated BEAS-2B cell plays a role in Nrf2-driven HO-1 expression. Mol Cell Toxicol 7:347–355

    Article  CAS  Google Scholar 

  • Li C-Y, Lee E-J, Wu T-S (2004) Antityrosinase principles and constituents of the petals of Crocus s ativus. J Nat Prod 67:437–440

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang W-J, Frei B (2016) Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol 9:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Feng P, Lin S, Xu Z, Zhao J, Chen Z, Luo Z, Tao Y, Chen S, Wang P (2023) Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 50:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zheng B, Li J, Shi J, Chu L, Han X, Chu X, Zhang X, Zhang J (2020) Crocin ameliorates arsenic trioxide-induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 131:110713

    Article  CAS  PubMed  Google Scholar 

  • Liu C-M, Ma J-Q, Xie W-R, Liu S-S, Feng Z-J, Zheng G-H, Wang A-M (2015) Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food ChemToxicol 82:19–26

    Article  CAS  Google Scholar 

  • Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ye C, Lv G, Li G, Gao Y, Ji X (2021) Crocetin improves ischaemic stroke in vitro and vivo. Arch Med Scie

  • Liu T, Qian Z (2002) Pharmacokinetics of crocetin in rats. Yao Xue Xue Bao 37:367–369

    CAS  PubMed  Google Scholar 

  • Liu Y, Liang Y, Zheng B, Chu L, Ma D, Wang H, Chu X, Zhang J (2020) Protective effects of crocetin on arsenic trioxide-induced hepatic injury: involvement of suppression in oxidative stress and inflammation through activation of Nrf2 signaling pathway in rats. Drug Des Devel Ther 14:1921–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokman MS, Althagafi HA, Alharthi F, Habotta OA, Hassan AA, Elhefny MA, Al Sberi H, Theyab A, Mufti AH, Alhazmi A (2022) Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. Environ Sci Pollut Res

  • Lu J, Dm Wu, Zheng Yl HuB, Zf Z, Shan Q, Zheng Zh, Cm L, Yj W (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222:199–212

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Xiong Y, Lin Z, Chu X, Panayi AC, Hu Y, Zhou J, Mi B, Liu G (2022) Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front Pharmacol 13:1009550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv B, Huo F, Zhu Z, Xu Z, Dang X, Chen T, Zhang T, Yang X (2016) Crocin upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling and inhibiting lipopolysaccharide-induced microglial activation. Neurochem Res 41:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Maturu P, Wei-Liang Y, Androutsopoulos VP, Jiang W, Wang L, Tsatsakis AM, Couroucli XI (2018) Quercetin attenuates the hyperoxic lung injury in neonatal mice: implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol 114:23–33

    Article  CAS  PubMed  Google Scholar 

  • Mazumder AG, Sharma P, Patial V, Singh D (2017) Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-κB activation. Basic Clin Pharmacol Toxicol 120:426–433

    Article  CAS  PubMed  Google Scholar 

  • Mehdizadeh R, Parizadeh MR, Khooei A-R, Mehri S, Hosseinzadeh H (2013) Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci 16:56–63

    PubMed  PubMed Central  Google Scholar 

  • Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh L, Abnous K, Razavi BM, Hosseinzadeh H (2020) Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects. Nutr Neurosci 23:221–236

    Article  CAS  PubMed  Google Scholar 

  • Mollazadeh H, Emami SA, Hosseinzadeh H (2015) Razi’s Al-Hawi and saffron (Crocus sativus): a review. Iran J Basic Med Sci 18:1153–1166

    PubMed  PubMed Central  Google Scholar 

  • Moshiri E, Basti AA, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S (2006) Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine 13:607–611

    Article  PubMed  Google Scholar 

  • Moshiri M, Vahabzadeh M, Hosseinzadeh H (2015) Clinical applications of saffron (Crocus sativus) and its constituents: a review. Drug Res 65:287–295

    CAS  Google Scholar 

  • Mutneja E, Verma VK, Malik S, Sahu AK, Ray R, Bhatia J, Arya DS (2020) Erdosteine salvages cardiac necrosis: novel effect through modulation of MAPK and Nrf-2/HO-1 pathway. J Biochem Mol Toxicol 34:e22590

    Article  CAS  PubMed  Google Scholar 

  • Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V (2019) Biologically active compounds and pharmacological activities of species of the genus Crocus: a review. Phytochemistry 162:56–89

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Matsushima M, Hayashi Y, Shibasaki M, Imaizumi K, Hashimoto N, Shimokata K, Hasegawa Y, Kawabe T (2011) Attenuation of transforming growth factor–β–stimulated collagen production in fibroblasts by quercetin-induced Heme oxygenase–1. Am J Respir Cell Mol 44:614–620

    Article  CAS  Google Scholar 

  • Nakisa N, Rahbardar MG (2021) Action mechanisms of antirheumatic herbal medicines. In: Toumi H (ed) Rheumatoid arthritis. IntechOpen, London, pp 171–184

    Google Scholar 

  • Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, Jung W-S, Cho K-H, Park J-H, Kang I (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648:110–116

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Sun J, Zhang W, Yu J, Zhuang C (2020) Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med 159:87–102

    Article  CAS  PubMed  Google Scholar 

  • Radan M, Dianat M, Badavi M, Mard SA, Bayati V, Ahmadizadeh M (2020) The association of cigarette smoke exposure with lung cellular toxicity and oxidative stress: the protective role of crocin. Inflammation 43:135–145

    Article  CAS  PubMed  Google Scholar 

  • Ramyaa P, Padma VV (2014) Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells—up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta Gen Subj 1840:681–692

    Article  CAS  Google Scholar 

  • Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Yazdi AT, Hosseinzadeh H (2019) Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: a biochemical, histopathological and molecular study. J Ethnopharmacol 237:286–299

    Article  CAS  PubMed  Google Scholar 

  • Righi V, Parenti F, Tugnoli V, Schenetti L, Mucci A (2015) Crocus sativus petals: waste or valuable resource? The answer of high-resolution and high-resolution magic angle spinning nuclear magnetic resonance. J Agric Food Chem 63:8439–8444

    Article  CAS  PubMed  Google Scholar 

  • Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J (2020) Nuclear factor kappa B signaling complexes in acute inflammation. Antioxid Redox Signal 33:145–165

    Article  PubMed  Google Scholar 

  • Roslan J, Giribabu N, Karim K, Salleh N (2017) Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother 86:570–582

    Article  CAS  PubMed  Google Scholar 

  • Salem M, Shaheen M, Borjac J (2022) Crocin suppresses inflammation-induced apoptosis in rmTBI mouse model via modulation of Nrf2 transcriptional activity. PharmaNutrition 21:100308

    Article  CAS  Google Scholar 

  • Sallam AA, El-Magd MA, Ahmed MM, Ghamry HI, Alshahrani MY, Hegazy RA, Magdy A, Abou El-Fotoh MF (2022) Quercetin alleviated multi-walled carbon nanotubes-induced neurotoxicity in mice through inhibition of oxidation, inflammation, and pyroptosis. Biomed Pharmacother 151:113160

    Article  CAS  PubMed  Google Scholar 

  • Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflamm 13:286

    Article  Google Scholar 

  • Sharma A, Parikh M, Shah H, Gandhi T (2020) Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon 6:e03803

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Liu X, Shi J, Wu X (2019) Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 125:496–502

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Liang X-c, Zhang H, Wu Q-l, Qu L, Sun Q (2013) Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol Sin 34:1140–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla RK, Bhat G (2011) Crocin: an overview. Indo-Glob Res J Pharm Sci 1:281–286

    CAS  Google Scholar 

  • Škandík M, Mrvová N, Bezek Š, Račková L (2020) Semisynthetic quercetin-quinone mitigates BV-2 microglia activation through modulation of Nrf2 pathway. Free Radic Biol Med 152:18–32

    Article  PubMed  Google Scholar 

  • Song L, Kang C, Sun Y, Huang W, Liu W, Qian Z (2016) Crocetin inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. Cellr Physiol Biochem 40:443–452

    Article  CAS  Google Scholar 

  • Song R, Han S, Gao H, Jiang H, Li X (2022) Crocin alleviates cognitive impairment associated with atherosclerosis via improving neuroinflammation in LDLR−/− mice fed a high-fat/cholesterol diet. Phytother Res 36:1284–1296

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Ahmed H, Dixit RK, Dharamveer SSA (2010) Crocus sativus L.: a comprehensive review. Pharmacogn Rev 4:200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suchal K, DS A, Goyal S, Ojha S (2018) Kaempferol protects against myocardial ischemia-reperfusion injury in rats by regulation of MAPK/NF-KB pathways. Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology). Japanese Pharmacological Society, pp. PO2–3–39

  • Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Chaudhary U, Bhatia J, Ojha S, Arya DS (2016) Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2016:7580731

    Article  PubMed  PubMed Central  Google Scholar 

  • Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Ojha S, Arya DS (2017) Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int J Molr Sci 18:1001

    Article  Google Scholar 

  • Sul O-J, Ra SW (2021) Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 26:6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Yan F, Xu Y, Rong F, Li S, Chen F (2004) Determination of crocin-1 in rabbit plasma and the pharmacokinetics by RP-HPLC. Yao Xue Xue Bao 39:854–856

    CAS  PubMed  Google Scholar 

  • Termentzi A, Kokkalou E (2008) LC-DAD-MS (ESI+) analysis and antioxidant capacity of Crocus sativus petal extracts. Planta Med 74:573–581

    Article  CAS  PubMed  Google Scholar 

  • Umigai N, Murakami K, Ulit M, Antonio L, Shirotori M, Morikawa H, Nakano T (2011) The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine 18:575–578

    Article  CAS  PubMed  Google Scholar 

  • Veith C, Drent M, Bast A, van Schooten FJ, Boots AW (2017) The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol 336:40–48

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Dutta A, Dahiya A, Kalra N (2022) Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. Phytomedicine 99:154004

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li W-l, Shen L-j, Jiang T-t, Xia J-j, You D-l, Hu S-y, Wang L, Wu X (2022) Crocin alleviates intracerebral hemorrhage–induced neuronal ferroptosis by facilitating Nrf2 nuclear translocation. Neurotox Res 40:596–604

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yuan B, Cheng B, Liu Y, Zhang B, Wang X, Lin X, Yang B, Gong G (2019) Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock 51:123–130

    Article  PubMed  Google Scholar 

  • Wang Y, Yan J, Xi L, Qian Z, Wang Z, Yang L (2012) Protective effect of crocetin on hemorrhagic shock–induced acute renal failure in rats. Shock 38:63–67

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu W, Shi C, Hu P (2020) Crocetin attenuates sepsis-induced cardiac dysfunction via regulation of inflammatory response and mitochondrial function. Front Physiol 11:514

    Article  PubMed  PubMed Central  Google Scholar 

  • Zq W, Weber N, Yj L, Proksch P (2006) Prenylflavonoids as nonsteroidal phytoestrogens and related structure–activity relationships. Chem Med Chem 1:482–488

    Article  Google Scholar 

  • Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-B, Lin W-L, Hsieh C-C, Ho H-Y, Tsay H-S, Lin W-C (2007) The hepatoprotective activity of kinsenoside from Anoectochilus formosanus. Phytother Res 21:58–61

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Q, Dai W, Li S, Feng J, Li J, Liu T, Xu S, Wang W, Lu X (2017) Quercetin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy by inhibiting ERK/NF-κB pathway. Gastroenterol Res Pract 2017:9724217

    Article  PubMed  PubMed Central  Google Scholar 

  • Xi L, Qian Z, Du P, Fu J (2007) Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 14:633–636

    Article  CAS  PubMed  Google Scholar 

  • Xiang M, Liu T, Tan W, Ren H, Li H, Liu J, Cao H, Cheng Q, Liu X, Zhu H (2016) Effects of kinsenoside, a potential immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8+ T cells communication in mice. Hepatology 64:2135–2150

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Song W, Liang X, Zhang Q, Shi Y, Liu W, Shi X (2020) Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother 127:110147

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Qian Z, Sheng L, Zhao B, Yang L, Ji H, Han X, Zhang R (2010) Effect of crocetin on blood pressure restoration and synthesis of inflammatory mediators in heart after hemorrhagic shock in anesthetized rats. Shock 33:83–87

    Article  PubMed  Google Scholar 

  • Yan M, Gao W, Guo L, Yang Y, Wang Y, Gong H, Xia S, Zhang B-K (2021) Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front Cell Dev Biol 9:809952

    PubMed  Google Scholar 

  • Yang CC, Hsiao LD, Wang CY, Lin WN, Shih YF, Chen YW, Cho RL, Tseng HC, Yang CM (2022) HO-1 upregulation by kaempferol via ROS-dependent Nrf2-ARE cascade attenuates lipopolysaccharide-mediated intercellular cell adhesion molecule-1 expression in human pulmonary alveolar epithelial cells. Antioxidants 11:782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Wen FQ, Shen Y, Li X, An J (2012) Effect of quercetin on cigarette smoke-induced airway inflammation and mucus production in rats. A30 pulmonary vices: cigarette smoke, alcohol and oxidative stress responses of the lung. Am J Respir Crit Care Med 185:A1254

  • Yao H, Sun J, Wei J, Zhang X, Chen B, Lin Y (2020) Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front Pharmacol 11:1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yardim A, Kandemir FM, Ozdemir S, Kucukler S, Comakli S, Gur C, Celik H (2020) Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology 81:137–146

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Matsushima M, Omura A, Mori K, Ogasawara N, Kodera Y, Shiga M, Ito K, Kojima S, Kawabe T (2015) The suppressive effect of quercetin on toll-like receptor 7-mediated activation in alveolar macrophages. Pharmacology 96:201–209

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Luo J, Hu D, Yang S, Zhang A, Qiu Y, Ma X, Wang J, Hou J, Bai J (2021) Total flavonoids of Crocus sativus petals release tert-butyl hydroperoxide-induced oxidative stress in BRL-3A cells. Oxid Med Cell Longev 2021:5453047

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaghloul MS, Said E, Suddek GM, Salem HA (2019) Crocin attenuates lung inflammation and pulmonary vascular dysfunction in a rat model of bleomycin-induced pulmonary fibrosis. Life Scie 235:116794

    Article  CAS  Google Scholar 

  • Zarezadeh M, Vazifeshenas-Darmiyan K, Afshar M, Valavi M, Serki E, Hosseini M (2017) Effects of extract of Crocus sativus petal on renal function in diabetic rats. J Maz Univ Med 27:11–24

    Google Scholar 

  • Zeinali M, Zirak MR, Rezaee SA, Karimi G, Hosseinzadeh H (2019) Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: a review. Iran J Basic Med Sci 22:334–344

    PubMed  PubMed Central  Google Scholar 

  • Zeka K, Marrazzo P, Micucci M, Ruparelia KC, Arroo RR, Macchiarelli G, Annarita Nottola S, Continenza MA, Chiarini A, Angeloni C (2020) Activity of antioxidants from Crocus sativus L. petals: potential preventive effects towards cardiovascular system. Antioxidants 9:1102

  • Zeka K, Ruparelia KC, Continenza MA, Stagos D, Vegliò F, Arroo RR (2015) Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia 107:128–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Guo Z, Wang Y, Geng J, Han S (2019) The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res 80:294–309

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Previn R, Lu L, Liao R-F, Jin Y, Wang R-K (2018) Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res Bull 142:352–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cai J, Ruan H, Pi H, Wu J (2007) Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J Ethnopharmacol 114:141–145

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xie Y, Cheng Z, Xi K, Huang X, Kuang F, Wang W, Liu T, Guo B, Wu S (2022) Quercetin ameliorates memory impairment by inhibiting abnormal microglial activation in a mouse model of paradoxical sleep deprivation. Biochem Biophys Res Commun 632:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Qian Z, Tang F, Sheng L (2005) Quercetin ameliorates memory impairment by inhibiting abnormal microglial activation in a mouse model of paradoxical sleep deprivation. Biochem Pharmacol 70:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Mei J, Han X, Li H, Yang S, Wang M, Chu L, Qiao H, Tang T (2019) Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B 9:973–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Jin J, Bai T, Sachleben LR Jr, Cai L, Zheng Y (2015) Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: a focus on fumaric acid esters. Life Sci 134:56–62

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Zhou X, Zhao J (2017) Quercetin prevents alcohol-induced liver injury through targeting of PI3K/Akt/nuclear factor-κB and STAT3 signaling pathway. Exp Ther Med 14:6169–6175

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Hossein Hosseinzadeh rose the notion, supervised, and checked the manuscript. Mahboobeh Ghasemzadeh Rahbardar collected the data and wrote the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemzadeh Rahbardar, M., Hosseinzadeh, H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1879–1909 (2023). https://doi.org/10.1007/s00210-023-02487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02487-5

Keywords

Navigation