Skip to main content
Log in

Exploring the Evolution Speed of a Two-qubit System Under Weak Measurement and Measurement Reversal in Correlated Noise Channels

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the speed of evolution of a two qubits system passing through three kinds of correlated channels (amplitude damping, phase damping, and depolarizing). By utilizing the pre-weak measurement and post-measurement scheme, the evolution speed of the system can be accelerated when suffers from the correlated noise channels. If the correlation parameter of the channel is adjusted, the speed of evolution will change with the variation of the strength of the correlated noise environment. In addition, the relation between entanglement and the measurement scheme is also studied. It is shown that entanglement may induce the change of evolution speed and the measurements could enhance the entanglement between the two qubits as the system is in a correlated amplitude damping channel and depolarizing channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002). https://doi.org/10.1103/PhysRevLett.88.237901

    Article  ADS  Google Scholar 

  2. Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623–626 (1981). https://doi.org/10.1103/PhysRevLett.46.623

    Article  ADS  MathSciNet  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nature Photon 5, 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  ADS  Google Scholar 

  4. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012). https://doi.org/10.1103/PhysRevLett.109.233601

    Article  ADS  Google Scholar 

  5. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009). https://doi.org/10.1103/PhysRevLett.103.240501

    Article  ADS  Google Scholar 

  6. Fröwis, F.: Kind of entanglement that speeds up quantum evolution. Phys. Rev. A 85, 052127 (2012). https://doi.org/10.1103/PhysRevA.85.052127

    Article  ADS  Google Scholar 

  7. Wei, Y.-B., Zou, J., Wang, Z.-M., Shao, B.: Quantum speed limit and a signal of quantum criticality. Sci. Rep. 6, 19308 (2016). https://doi.org/10.1038/srep19308

    Article  ADS  Google Scholar 

  8. Yu, M., Fang, M.-F., Zou, H.-M.: Quantum speed limit time of a two-level atom under different quantum feedback control. Chinese Phys. B. 27, 010303 (2018). https://doi.org/10.1088/1674-1056/27/1/010303

    Article  ADS  Google Scholar 

  9. García-Pintos, L.P., Del Campo, A.: Quantum speed limits under continuous quantum measurements. New J. Phys. 21, 033012 (2019). https://doi.org/10.1088/1367-2630/ab099e

    Article  ADS  MathSciNet  Google Scholar 

  10. Hou, L., Shao, B., Wang, C.: Quantum speed limit under the influence of measurement-based feedback control. Int. J. Theor. Phys. 62, 47 (2023). https://doi.org/10.1007/s10773-023-05318-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou, L., Shi, Y., Wang, C.: The quantum speed limit time of a qubit in amplitude-damping channel with weak measurement controls. Eur. Phys. J. Plus. 138, 440 (2023). https://doi.org/10.1140/epjp/s13360-023-04028-8

    Article  Google Scholar 

  12. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  13. Xu, Z.-Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A. 89, 012307 (2014)

    Article  ADS  Google Scholar 

  14. Jahromi, H.R., Mahdavipour, K., Khazaei Shadfar, M., Lo Franco, R.: Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed. Phys. Rev. A 102, 022221 (2020). https://doi.org/10.1103/PhysRevA.102.022221

    Article  ADS  MathSciNet  Google Scholar 

  15. Xu, K., Han, W., Zhang, Y.-J., Fan, H.: Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning. Chin. Phys. B 27, 010302 (2018)

    Article  ADS  Google Scholar 

  16. Wang, J., Wu, Y.N., Xie, Z.Y.: Role of flow of information in the speedup of quantum evolution. Sci. Rep. 8, 16870 (2018). https://doi.org/10.1038/s41598-018-34890-x

    Article  ADS  Google Scholar 

  17. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002). https://doi.org/10.1103/PhysRevA.65.050301

    Article  ADS  Google Scholar 

  19. Banaszek, K., Dragan, A., Wasilewski, W., Radzewicz, C.: Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. Phys. Rev. Lett. 92, 257901 (2004). https://doi.org/10.1103/PhysRevLett.92.257901

    Article  ADS  Google Scholar 

  20. Caruso, F., Giovannetti, V., Palma, G.M.: Teleportation-induced correlated quantum channels. Phys. Rev. Lett. 104, 020503 (2010). https://doi.org/10.1103/PhysRevLett.104.020503

    Article  ADS  Google Scholar 

  21. Guo, Y., Tian, Q., Zeng, K., Chen, P.: Fidelity of quantum teleportation in correlated quantum channels. Quantum Inf. Process. 19, 182 (2020). https://doi.org/10.1007/s11128-020-02675-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Giovannetti, V., Palma, G.M.: Master equations for correlated quantum channels. Phys. Rev. Lett. 108, 040401 (2012). https://doi.org/10.1103/PhysRevLett.108.040401

    Article  ADS  Google Scholar 

  23. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004). https://doi.org/10.1103/PhysRevA.69.010303

    Article  ADS  Google Scholar 

  24. Long, Y., Guo, Y., Liu, X., Tian, Q.: Entanglement teleportation of a two-qubit system via correlated quantum channels. Int. J. Theor. Phys. 59, 77–86 (2020). https://doi.org/10.1007/s10773-019-04289-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Awasthi, N., Joshi, D.K.: Sustainability of entanglement sudden death under the action of memory channel. Laser Phys. Lett. 20, 025202 (2023). https://doi.org/10.1088/1612-202X/acaece

    Article  ADS  Google Scholar 

  26. Addis, C., Karpat, G., Macchiavello, C., Maniscalco, S.: Dynamical memory effects in correlated quantum channels. Phys. Rev. A 94, 032121 (2016). https://doi.org/10.1103/PhysRevA.94.032121

    Article  ADS  Google Scholar 

  27. Guo, Y.-N., Zeng, K., Chen, P.-X.: Teleportation of quantum Fisher information under decoherence channels with memory. Laser Phys. Lett. 16, 095203 (2019). https://doi.org/10.1088/1612-202X/ab2f33

    Article  ADS  Google Scholar 

  28. Guo, Y., Yang, C., Tian, Q., Wang, G., Zeng, K.: Local quantum uncertainty and interferometric power for a two-qubit system under decoherence channels with memory. Quantum Inf. Process. 18, 375 (2019). https://doi.org/10.1007/s11128-019-2490-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, Y.-L., Zu, C.-J., Wei, D.-M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum Inf. Process. 18, 2 (2019). https://doi.org/10.1007/s11128-018-2114-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Xu, K., Zhang, G.-F., Liu, W.-M.: Quantum dynamical speedup in correlated noisy channels. Phys. Rev. A 100, 052305 (2019). https://doi.org/10.1103/PhysRevA.100.052305

    Article  ADS  Google Scholar 

  31. Haseli, S., Hadipour, M.: Speed of quantum evolution for correlated quantum noise. Int. J. Theor. Phys. 61, 117 (2022). https://doi.org/10.1007/s10773-022-05085-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Taddei, M.M., Escher, B.M., Davidovich, L., De Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013). https://doi.org/10.1103/PhysRevLett.110.050402

    Article  ADS  Google Scholar 

  33. Del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013). https://doi.org/10.1103/PhysRevLett.110.050403

    Article  Google Scholar 

  34. Pires, D.P., Cianciaruso, M., Céleri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016). https://doi.org/10.1103/PhysRevX.6.021031

    Article  Google Scholar 

  35. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996). https://doi.org/10.1016/0024-3795(94)00211-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Yu, C.-S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373, 58–60 (2008). https://doi.org/10.1016/j.physleta.2008.10.083

    Article  ADS  MATH  Google Scholar 

  37. Wang, X., Sun, Z., Wang, Z.D.: Operator fidelity susceptibility: an indicator of quantum criticality. Phys. Rev. A 79, 012105 (2009). https://doi.org/10.1103/PhysRevA.79.012105

    Article  ADS  Google Scholar 

  38. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994). https://doi.org/10.1103/PhysRevLett.72.3439

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203–1259 (2014). https://doi.org/10.1103/RevModPhys.86.1203

    Article  ADS  Google Scholar 

  40. D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310–310 (2007). https://doi.org/10.1088/1367-2630/9/9/310

    Article  ADS  Google Scholar 

  41. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003). https://doi.org/10.1103/PhysRevA.67.064301

    Article  ADS  Google Scholar 

  42. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991). https://doi.org/10.1103/PhysRevA.44.5401

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 12005182 and the University Natural Science Research of Project of Jiangsu Province under Grant No. 20KJB140003. The corresponding author also acknowledge the sponsorship by the QingLan Project Q022001.

Author information

Authors and Affiliations

Authors

Contributions

L. Hou came up with the main idea of the paper and wrote the main manuscript text. Y. N. Zhang gave a useful suggestion about the method of the measurement scheme. Y. G. Zhu prepared the figures from Fig. 1 to Fig. 9. All authors reviewed the paper.

Corresponding author

Correspondence to Lu Hou.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, Y. & Zhu, Y. Exploring the Evolution Speed of a Two-qubit System Under Weak Measurement and Measurement Reversal in Correlated Noise Channels. Int J Theor Phys 62, 221 (2023). https://doi.org/10.1007/s10773-023-05481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05481-y

Keywords

Navigation