Skip to main content
Log in

Temporal evolution of quantum correlations under non-Hermitian operation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we investigate the non-unitary dynamics of a two-qubit system under the action of local non-Hermitian operation from the perspectives of quantum correlations. The correlations are quantified by entanglement, maximal Bell function and different versions of measurement-induced nonlocality (MIN). The analysis is carried out for different initial conditions. We show the advantages of MIN in capturing the nonlocal aspects of the mixed quantum states over the entanglement and Bell function. Interestingly, by proper tuning of the system’s parameter, one can observe the stationary quantum correlations under this non-Hermitian circumstance which have potential applications in quantum information processing and quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  • Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Google Scholar 

  • Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    ADS  MathSciNet  Google Scholar 

  • Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bender, C.M., Boettcher, S., Meisinger, S.: PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bhuvaneswari, S., Muthuganesan, R., Radha, R.: Spotlighting quantum phase transition in spin-1/2 Ising-Heisenberg diamond chain employing Measurement-Induced Nonlocality. Physica A 573, 125932 (2021)

    MathSciNet  MATH  Google Scholar 

  • Bian, Z., Xiao, L., Wang, K., Onanga, F.A., Ruzicka, F., Yi, W., Joglekar, Y.N., Xue, P.: Quantum information dynamics in a high-dimensional parity-time-symmetric system. Phys. Rev. A 102, 030201(R) (2020)

    ADS  Google Scholar 

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  • Dakić, B.V., Brukner, V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    ADS  MATH  Google Scholar 

  • Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Google Scholar 

  • Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  • El-Hadidy, E.G., Farouk, A., Abdel-Aty, M., Ghose, S.: Controlling steady-state entanglement and quantum discord through squeezing angle. Chaos Solitons Fractals 128, 382 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Feshbach, H., Porter, C.E., Weisskopf, V.F.: Model for nuclear reactions with neutrons. Phys. Rev. 96, 448 (1954)

    ADS  MATH  Google Scholar 

  • Girolami, D., Adesso, G.: Observable measure of bipartite quantum correlations. Phys. Rev. Lett. 108, 150403 (2012)

    ADS  Google Scholar 

  • Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    ADS  Google Scholar 

  • Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Lam, P.K.: Observing the operational significance of discord consumption. Nat. Phys. 8, 671 (2012)

    Google Scholar 

  • Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    ADS  Google Scholar 

  • Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  • Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sende, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 62307 (2005)

    ADS  Google Scholar 

  • Indrajith, V.S., Muthuganesan, R., Sankaranarayanan, R.: Entanglement and Measurement-induced quantum correlation in Heisenberg spin models. Physica A 527, 121325 (2019)

    MathSciNet  MATH  Google Scholar 

  • Indrajith, V.S., Muthuganesan, R., Sankaranarayanan, R.: Measurement induced nonlocality quantified by hellinger distance and weak measurements. Physica A 566, 125615 (2021)

    MathSciNet  MATH  Google Scholar 

  • Jia-Sen, J., Feng-Yang, Z., Chang-Shui, Y., He-Shan, S.: Journal of physics a: direct scheme for measuring the geometric quantum discord. Math. Theor. 45, 115308 (2012)

    MATH  Google Scholar 

  • Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2011)

    ADS  Google Scholar 

  • Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    ADS  MATH  Google Scholar 

  • Ming-Liang, H., Fan, H.: Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343 (2012)

    ADS  MATH  Google Scholar 

  • Ming-Liang, H., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 33004 (2015)

    MATH  Google Scholar 

  • Mohamed, A.-B.A., Hessian, H.A., Eleuch, H.: Quantum correlations of two qubits beyond entanglement in two lossy cavities linked by a waveguide. Chaos, Solitons and Fractals 135, 109773 (2020)

    MathSciNet  MATH  Google Scholar 

  • Mohamed, A.-B.A., Abdel-Aty, A.-H., Eleuch, H.: Dynamics of trace distance and Bures correlations in a three-qubit XY chain: Intrinsic noise model. Physica E 128, 114529 (2020)

    Google Scholar 

  • Muthuganesan, R., Chandrasekar, V.K.: Measurement-induced nonlocality based on affinity. Commun. Theor. Phys. 72, 075103 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  • Muthuganesan, R., Chandrasekar, V.K.: Intrinsic decoherence effects on measurement-induced nonlocality. Quantum Inf. Process 20, 46 (2021)

    ADS  MathSciNet  Google Scholar 

  • Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)

    ADS  MATH  Google Scholar 

  • Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  • Passante, G., Moussa, O., Laflamme, R.: Measuring geometric quantum discord using one bit of quantum information. Phys. Rev. A 85, 032325 (2012)

    ADS  Google Scholar 

  • Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    ADS  Google Scholar 

  • Qing-Wen, W., Shu-Qian, S., Li, M., Li, L.: Measurement-induced nonlocality based on Wigner-Yanase skew information. Europhys. Lett. 114, 10007 (2016)

    Google Scholar 

  • Roccati, F., Lorenzo, S., Palma, G.M., Landi, G.T., Brunelli, M., Ciccarello, F.: Quantum correlations in PT-symmetric systems. Quantum Sci. Technol. 6, 025005 (2021)

    ADS  Google Scholar 

  • Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013)

    ADS  Google Scholar 

  • Schrodinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    ADS  MATH  Google Scholar 

  • Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dssipative environments. Int. J. Mod. Phys. B 27, 1350163 (2013)

    ADS  MATH  Google Scholar 

  • Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)

    ADS  Google Scholar 

  • Shin-Liang, C., Chen, G.Y., Yueh-Nan, C.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 54301 (2014)

    Google Scholar 

  • Shi-Yang, Z., Mao-Fa, F., Xu, L.: Quantum entropy of non-Hermitian entangled systems. Quantum Inf. Process 16, 234 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • W, Shao-Xiong., Zhang, J., Y Chang-Shui., S He-Shan,: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    ADS  Google Scholar 

  • Wan-Yue, L., Liu, Y.: Impact of PT-symmetric operation on concurrence and the first-order coherence. Int. J. Theor. Phys. 60, 2878 (2021)

    MathSciNet  MATH  Google Scholar 

  • Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    ADS  MATH  Google Scholar 

  • Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)

    ADS  Google Scholar 

  • Xiao, L., Wang, K., Zhan, X., Bian, Z., Kawabata, K., Ueda, M., Yi, W., Xue, P.: Observation of critical phenomena in parity-time-symmetric quantum dynamics. Phys. Rev. Lett. 123, 230401 (2019)

    ADS  Google Scholar 

  • Yan, X.Q., Yue, Z.L.: Dynamics of quantum and classical correlations of a two-atom system in thermal reserviors. Chaos, Solitons and Fractals 57, 117 (2013)

    ADS  MATH  Google Scholar 

  • Yan-Yi, W., Mao-Fa, F.: Enhancing and protecting quantum correlations of a two-qubit entangled system via non-Hermitian operation. Quantum Inf. Process 17, 208 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yi-Chan, L., Min-Hsiu, H., Flammia, S.T., Lee, R.-K.: Local PT symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)

    Google Scholar 

Download references

Acknowledgements

JRP thanks the Department of Science and Technology, Government of India, for providing an INSPIRE Fellowship No. DST/INSPIRE Fellowship/2017/ IF170539. The work of VKC forms part of the research projects sponsored SERB-DST-MATRICS Grant No. MTR/2018/000676 and CSIR Project Grant No. 03(1444)/18/ EMR-II. JRP, and VKC wish to thank DST, New Delhi for computational facilities under the DST-FIST programme (SR/FST/PS-1/2020/135) to the Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Chandrasekar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkavi, J.R., Muthuganesan, R. & Chandrasekar, V.K. Temporal evolution of quantum correlations under non-Hermitian operation. Opt Quant Electron 54, 729 (2022). https://doi.org/10.1007/s11082-022-04152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04152-2

Keywords

Navigation