Skip to main content
Log in

An Image Denoising Technique using Quantum Wavelet Transform

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The amalgamation of ‘Quantum computing’ with image processing represents the various ways of handling images for different purposes. In this paper,an image denoising scheme based on quantum wavelet transform is proposed.A noisy image is embedded into the wavelet coefficients of the original image. As a result,it affects the visual quality of the original image. The quantum Daubechis kernel of 4th order is used to extract wavelet coefficients from the resultant image. Then a quantum oracle is implemented with a suitable thresholding function to decompose the wavelet coefficients into a greater effect applicable for the original image and lower effect for the noisy image wavelet coefficients. However,original image wavelet coefficients are greater than the noisy wavelet coefficients.A detail computational time complexity analysis is given and compared with some state-of-art denoising techniques. The result analysis shows that the proposed quantum image denoising technique has better visual quality in terms of PSNR,MSE and QIFM values Compare to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fijany, A., Williams, C.P.: Quantum wavelet transforms: fast algorithms and complete circuits. In: NASA international conference on quantum computing and quantum communications, pp 10–33. Springer, Berlin (1998)

  2. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inform. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Terraneo, M., Shepelyansky, D.L.: Imperfection effects for multiple applications of the quantum wavelet transform. Phys. Rev. Lett. 90(25), 257902 (2003)

    Article  ADS  Google Scholar 

  4. Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum fourier transform. Int. J. Quantum Inform. p. 1850031 (2018)

  5. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum inform. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Djemame, S., Batouche, M., Oulhadj, H., Siarry, P.: Solving reverse emergence with quantum PSO application to image processing. Soft. Comput. pp. 1–15 (2018)

  7. Yang, Y.G., Xia, J., Jia, X., Zhang, H: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inform. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inform. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7(1), 17–26 (2007)

    Google Scholar 

  10. McMahon, D.: Quantum computing explained. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  11. Le, P.Q., Dong, F.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inform. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inform. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fan, L., Fan, L., Tan, C.L.: A Diffusion Process for Wavelet-Transform-based Image Denoising

  15. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002)

    Article  ADS  Google Scholar 

  16. Sidhu, K.S., Khaira, B.S., Virk, I.S.: Medical image denoising in the wavelet domain using haar and DB3 filtering. Int. Refereed J. Eng. Sci. 1(1), 001–008 (2012)

    Google Scholar 

  17. Yuan, S., Mao, X., Zhou, J.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys 56(8), 2495–2511 (2017)

    Article  MATH  Google Scholar 

  18. Mihcak, M.K., Kozintsev, I., Ramchandran, K., Moulin, P.: Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Process. Lett. 6(12), 300–303 (1999)

    Article  ADS  Google Scholar 

  19. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Singh, L., Janghel, R.: Image Denoising techniques: a brief survey. In: Harmony search and nature inspired optimization algorithms, pp 731–740. Springer, Singapore (2019)

  21. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2010). ISBN 978-1-107-00217-3 hardback

    Book  MATH  Google Scholar 

  22. Wang, J., Geng, Y.C., Han, L., Liu, J.Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)

    Article  MATH  Google Scholar 

  23. Manta, V.I., Caraiman, S.: Quantum image filtering in the frequency domain. Adv. Elect. Comput. Eng. 13(3), 77–84 (2013)

    Article  Google Scholar 

  24. Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local algorithm for image denoising. In: 2006 international conference on image processing. IEEE, pp 1429–1432 (2006)

  25. Chen, G., Qian, S.E.: Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 49(3), 973–980 (2011)

    Article  ADS  Google Scholar 

  26. Starck, J.L., Candès, E.J.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Cai, Z., Cheng, T.H., Lu, C., Subramanian, K.R.: Efficient wavelet based image denoising algorithm. IEEE Electron. Lett. 37(11), 670–684 (2001)

    Article  Google Scholar 

  28. Li, P., Liu, X., Xiao, H.: Quantum image median filtering in the spatial domain. Quantum Inform. Process. 17(3), 49 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Chakraborty, S., Dey, L.: Image representation, filtering, and natural computing in a multivalued quantum system. In: Nature-inspired computing: concepts, methodologies, tools, and applications, IGI Global, pp 28–56 (2017)

  30. Chakraborty, S., Mandal, S.B., Shaikh, S.H.: Design and implementation of a multivalued quantum circuit for threshold based color image segmentation. Int. Dec. Technol. 12(2), 251–264 (2018)

    Google Scholar 

  31. Chakraborty, S., Mandal, S.B., Shaikh, S.H.: Quantum image processing: challenges and future research issues. Int. J. Inf. Technol. pp. 1-15 arXiv (2018)

  32. Iliyasu, A.M., Abuhasel, K.A., Yan, F.: A quantum-based image fidelity metric. In: Science and information conference, pp 664–671 (2015)

  33. Iliyasu, A.M., Yan, F., Kaoru, H.: Metric for estimating congruity between quantum images. Entropy 18(10), 360–380 (2016)

    Article  ADS  Google Scholar 

  34. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Image processing place. http://www.prenhall.com/ gonzalezwoods

  35. Yan, F., Chen, K., Venegas-Andraca, S.E., Zhao, J.: Quantum image rotation by an arbitrary angle. Quantum Inform. Process. 16(11), 282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Surendhar, S., Thirumurugan, P., Sasikumar, S.: A Denoising architecture for removing impulse noise in image. International Journal of Innovative Research in Science, Engineering and Technology, 3(1) (2014)

  37. Chakraborty, S., Shaikh, S.H., Chakrabarti, A., Ghosh, R.: A hybrid quantum feature selection algorithm using a quantum inspired graph theoretic approach. Appl. Intell. 50(6), 1775–1793 (2020)

    Article  Google Scholar 

  38. Chakraborty, S., Shaikh, S.H., Mandal, S.B., Ghosh, R., Chakrabarti, A.: A study and analysis of a discrete quantum walk-based hybrid clustering approach using d-regular bipartite graph and 1D lattice. Int. J. Quantum Inform. 17(02), 1950016 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

No research funding has been received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chakraborty.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Shaikh, S.H., Chakrabarti, A. et al. An Image Denoising Technique using Quantum Wavelet Transform. Int J Theor Phys 59, 3348–3371 (2020). https://doi.org/10.1007/s10773-020-04590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04590-2

Keywords

Navigation