Skip to main content
Log in

Quantum image rotation by an arbitrary angle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel method of quantum image rotation (QIR) based on shear transformations on NEQR quantum images is proposed. To compute the horizontal and vertical shear mappings required for rotation, we have designed quantum self-adder, quantum control multiplier, and quantum interpolation circuits as the basic computing units in the QIR implementation. Furthermore, we provide several examples of our results by presenting computer simulation experiments of QIR under \(30^\circ \), \(45^\circ \), and \(60^\circ \) rotation scenarios and have a discussion onto the anti-aliasing and computational complexity of the proposed QIR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inf. 17(3), 404–417 (2013)

    Article  Google Scholar 

  4. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cubitt, T.S., Perez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature 528(7581), 207–211 (2015)

    Article  ADS  Google Scholar 

  6. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  8. NASA Quantum Artificial Intelligence Laboratory. http://ti.arc.nasa.gov/quantum/

  9. Lanzagorta, M.: Quantum Radar, p. 140. Morgan and Claypool, Synthesis Lectures on Quantum Computing (2011)

  10. Schulda, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  ADS  Google Scholar 

  11. Lanzagorta, M., Uhlmann, J.: Quantum algorithmic methods for computational geometry. Math. Struct. Comput. Sci. 20(6), 1117–1125 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Venegas-Andraca, S.E.: Introductory words: special issue on quantum image processing. Quantum Inf. Process. 14(5), 1535–1537 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Eleven papers. Special issue on quantum image processing. Quantum Inf. Process. 14(5) 1535–1755 (2015)

  14. ID Quantique. http://www.idquantique.com/

  15. DWave systems. http://www.dwavesys.com/

  16. IBM Quantum Experience. http://research.ibm.com/ibm-q/

  17. Microsoft Station Q. https://stationq.microsoft.com/

  18. Google Quantum Artificial Intelligence Laboratory. https://plus.google.com/+QuantumAILab/

  19. 1Qbit. http://1qbit.com/

  20. Rigetti. http://rigetti.com/

  21. Quantum Manifesto, an EU call to invest €1 billion on quantum technologies. http://qurope.eu/manifesto

  22. UK National Quantum Technologies Programme. http://uknqt.epsrc.ac.uk/

  23. USA National Science and Technology Council. Advancing Quantum Information Science: National Challenges and Opportunities (July 2016). https://obamawhitehouse.archives.gov/blog/2016/07/26/realizing-potential-quantum-information-science-and-advancing-high-performance

  24. The Economist, Technology Quarterly section—Quantum leaps (11 March 2017). http://www.economist.com/technology-quarterly/2017-03-09/quantum-devices

  25. MIT Tech Review 10 Breakthrough Technologies 2017—Practical Quantum Computers. https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017-practical-quantum-computers/

  26. Advanced Research and Development Activity. Qist: a quantum information science and technology roadmap (2004). http://qist.lanl.gov/

  27. ERA-Pilot. Quantum information processing and communication strategic report, vol. 1.4 (2007). http://cordis.europa.eu/pub/fp7/ict/docs/fet-proactive/press-12_en.pdf

  28. InnovateUK. A roadmap for quantum technologies in the UK (2015). https://www.epsrc.ac.uk/newsevents/pubs/quantumtechroadmap/

  29. Winiarczyk, R., Gawron, P., Miszczak, J.A., Pawela, Ł., Puchała, Z.: Analysis of patent activity in the field of quantum information processing. Int. J. Quantum Inform. 11, 1350007 (2013)

    Article  ADS  Google Scholar 

  30. UK Intellectual Property Office Informatics Team. Eight great technologies. Quantum Technologies, a patent overview. UK Intellectual Property Office (2014). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/339686/quantum-technologies.pdf

  31. Ribordy, G., Guinnard O., (inventors), ID Quantique S.A. (assignee).: Method and apparatus for generating true random numbers by way of a quantum optics process. US patent US 7,519,641 B2 (filed on 17 Aug 2004, issued on 14 Apr 2009)

  32. Berkley, A.J., Harris, R.G., Amin (inventors), M.: D-Wave Systems, Inc (assignee). Systems, methods, and apparatus for calibrating, controlling, and operating a quantum processor. US patent US 20110060780 A1 (filed on 19 May 2009, issued on 10 March 2011)

  33. Troyer, M., Wecker, D.B., Bauer (inventors), B.: Microsoft Technology Licensing, LLC (assignee). Quantum annealing simulator. US patent US 20140297247 A1 (filed on 26 March 2013, issued on 06 Oct 2015)

  34. Hunt, J.H., Howe (inventors), W.R.: The Boeing Company (assignee). Anti-hacking system for quantum communication. US patent US 20160105439 A1 (filed on 27 Feb 2013, issued on 21 Jun 2016)

  35. Vlasov, A.Y.: Quantum Computations and Image Recognition. arXiv:quant-ph/9703010 (1997)

  36. Beach, G. Lomont, C., Cohen, C.: Quantum image processing. In: Proceedings of the 2003 IEEE Workshop on Applied Imagery Pattern Recognition, pp. 39–44 (2003)

  37. Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)

  38. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MATH  MathSciNet  Google Scholar 

  40. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. Tanimoto, S.L.: An Interdisciplinary Introduction to Image Processing. MIT Press, Cambridge (2012)

    Google Scholar 

  42. Yan, F., Iliyasu, A.M., Fatichah, C., Tangel, M.L., Betancourt, J.P., Dong, F., Hirota, K.: Quantum image searching based on probability distributions. J. Quantum Inf. Sci. 2(3), 55–60 (2012)

    Article  Google Scholar 

  43. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference Quantum Information and Computation, pp. 137–147 (2003)

  44. Yang, Y., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Caraiman, S., Manta, V.I.: Quantum image filtering in the frequency domain. Adv. Electrical Comput. Eng. 13(3), 77–84 (2013)

    Article  Google Scholar 

  47. Abura’ed, N., Khan, F.S., Bhaskar, H.: Advances in the quantum theoretical approach to image processing applications. ACM Comput. Surv. 49(4), 1–49 (2017)

    Article  Google Scholar 

  48. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inform. 15(3), 1730001 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Draper, T.G.: Addition on a Quantum Computer. arXiv:quant-ph/0008033 (2000)

  52. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  54. Yan, F., Iliyasu, A.M., Sun, B., Venegas-Andraca, S.E., Dong, F., Hirota, K.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Yan, F., Iliyasu, A.M., Le, P.Q., Sun, B., Dong, F., Hirota, K.: A parallel comparison of multiple pairs of images on quantum computers. Int. J. Innov. Comput. Appl. 5(4), 199–212 (2013)

    Article  Google Scholar 

  56. Rukundo, O., Can, H.: Nearest neighbor value interpolation. Int. J. Adv. Comput. Sci. Appl. 3(4), 25–30 (2012)

    Google Scholar 

  57. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. CUP, Cambridge (2000)

    MATH  Google Scholar 

  58. Paeth, A.W.: A fast algorithm for general raster rotation. In: Proceedings of Graphics Interface and Vision Interface pp. 77–81 (1986)

  59. Unser, M., Thevenaz, P., Yaroslavsky, L.: Convolution-based interpolation for fast, high-quality rotation of images. IEEE Trans. Image Process. 4(10), 1371–1381 (1995)

    Article  ADS  Google Scholar 

  60. Sharma, R.K., Shah, S.K., Shankar, A.G.: Algebra I: a basic course in abstract algebra. Pearson India (2011)

  61. Wolfram MathWorld. Shear transformation. http://mathworld.wolfram.com/Shear.html

  62. Wolfram MathWorld. Shear factor. http://mathworld.wolfram.com/ShearFactor.html

  63. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, Upper Saddle River, NJ (2007)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61502053) and the Science & Technology Development Program of Jilin Province, China (No. 20170520065JH). SEVA gratefully acknowledges the financial support of Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias and CONACyT (SNI member number 41594 as well as Fronteras de la Ciencia project No. 1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador E. Venegas-Andraca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Chen, K., Venegas-Andraca, S.E. et al. Quantum image rotation by an arbitrary angle. Quantum Inf Process 16, 282 (2017). https://doi.org/10.1007/s11128-017-1733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1733-5

Keywords

Navigation