Skip to main content
Log in

High-Dimensional Bell State Analysis for Photon-Atoms Hybrid System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

High-dimensional Bell state analysis (HDBSA) has great application potential in the high-capacity quantum communication and quantum information processing. In this paper, we propose a scheme to completely distinguish the 2N-dimensional Bell states of a hybrid system with the help of the nonlinear interaction between the Λ-type atoms and a photon system. We use the unit-probability quantum teleportation with non-maximum entanglement as an example to show the application of HDBSA. Finally, we discuss its possible realization with current experimental techniques. Our HDBSA protocol may pave a new way for high-capacity long-distance quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zhan, Y.B.: Controlled teleportation of high-dimension quantumstates with generalized Bell-state measurement. Chinese Phys. 16, 1009–1963 (2007)

    Google Scholar 

  3. Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131–137 (2018)

    Article  ADS  MATH  Google Scholar 

  4. Xu, L.S., Yong, X.L., Yang, J.Q., Zhao, P.R., Tao, Y.H.: Unknown two particles teleportation using a special two-particle quantum channel. Int. J. Theor. Phys. 57, 381–387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57, 2233–2240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  7. Karimipour, V., Alireza, B.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65, 052331 (2002)

    Article  ADS  Google Scholar 

  8. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-Level systems. Phys. Rev. L 88, 127902 (2002)

    Article  ADS  Google Scholar 

  9. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  10. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  11. Zhu, F., Zhang, Z.W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 22 (2017)

    Article  Google Scholar 

  12. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  13. Cao, Z.W., Song, D., Peng, J.Y., He, C., Feng, J.: High security quantum secure direct communication protocol based on three-particle GHZ states. In: IEEE 17th International Conference on Nanotechnology (IEEE-NANO) (2017)

  14. Long, G.L., Wang, C., Deng, F.G., Zheng, C.: Quantum secure direct communication. Conf. Coherence Quant. Opt. M6, 42 (2013)

    Google Scholar 

  15. Yang, Y., Jiang, M., Zhou, L.L.: Improving the teleportation scheme of five-qubit state with a seven-qubit quantum channel. Int. J. Theor. Phys. 57, 3485–3491 (2018)

    Article  Google Scholar 

  16. Yu, Q, Zhang, Y.B., Li, J.: Generic preparation and entanglement detection of equal superposition states. Sci. China-Phys. Mech. Astron. 60(7), 070313 (2017)

    Article  Google Scholar 

  17. Wang, C., Shen, W.W., Mi, S.C., Zhang, Y., Wang, T.J.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull. 60(23), 2016–2021 (2015)

    Article  Google Scholar 

  18. Zhang, K. J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks-deterministic quantum operation sharing schemes with Bell states. Sci. China-Phys. Mech. Astron. 59(6), 660302 (2016)

    Article  Google Scholar 

  19. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  20. Zhu, F, Zhang, W, Sheng, Y, Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  21. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–68 (2017)

    Article  Google Scholar 

  22. Wang, H., Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13(5), 130315 (2018)

    Article  Google Scholar 

  23. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Sci. App. 5(9), e16144 (2016)

    Article  Google Scholar 

  24. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  25. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  26. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication, arXiv:1805.07228 (2018)

  27. Ma, Y.M., Wang, T.J.: High-dimensional controlled-phase gate between a 2N-dimensional photon and the N three-level artificial atoms. Int. J. Theor. Phys. 56(10), 3068–3083 (2017)

    Article  MATH  Google Scholar 

  28. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2016)

    Article  ADS  Google Scholar 

  29. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  30. Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China-Phys. Mech. Astron. 59, 100315 (2016)

    Article  Google Scholar 

  31. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China-Phys. Mech. Astron. 58(6), 060301 (2015)

    Article  Google Scholar 

  32. Shi, B.S., Jiang, Y.K., Guo, G.C.: Probabilistic teleportation of two-particle entangled state. Phys. Lett. A 268, 161–164 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Pati, A.K., Agrawal, P.: Probabilistic teleportation of a qudit. Phys. Lett. A 371(3), 185–189 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tao, Y.H., Zheng, J.H.: Probabilistic controlled teleportation of two-particle entangled state via the optimal quantum state. Int. J. Theor. Phys. 52(6), 2001–2007 (2013)

    Article  Google Scholar 

  35. Augusiak, R., Horodecki, P.: Generalized simolin states and their properties. Phys. Rev. A 73, 012318 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation via several kinds of three-qubit states. Sci. in China Ser. G 51(10), 1529–1556 (2008)

    Article  Google Scholar 

  37. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. Assoc. 84, 50001 (2008)

    Article  ADS  Google Scholar 

  38. Kumar, A., Adhikari, S., Banerjee, S. , Roy, S.: Optimal quantum communication using multiparticle partially entangled states. Phys. Rev. A 87, 022307 (2013)

    Article  ADS  Google Scholar 

  39. Dixon, P.B., Howland, G.A., Schneeloch , J., Howell, J.C.: Quantum mutual information capacity for high dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012)

    Article  ADS  Google Scholar 

  40. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)

    Article  ADS  Google Scholar 

  42. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  43. Ionicioiu, R., Spiller, T.P., Munro, W.J.: Generalized Toffoli gates using qudit catalysis. Phys. Rev. A 80, 012312 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  45. Walborn, S., Padua, P.S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  46. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  47. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    Article  ADS  Google Scholar 

  48. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  49. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664 (2012)

    Article  ADS  Google Scholar 

  50. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  51. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  52. Cerf, N.J.: Pauli cloning of a qantum bit. Phys. Rev. Lett. 84, 4497 (2000)

    Article  ADS  Google Scholar 

  53. Svozilik, J., Perina, J.J., Torres, J.P.: High spatial entanglement via chirped quasiphase-matched optical parametric down-conversion. Phys. Rev. A 86(5), 052318 (2013)

    Article  ADS  Google Scholar 

  54. He, L.Y., Wang, T.J., Wang, C.: Construction of high-dimensional universal quantum logic gates using a Λ, system coupled with a whispering-gallery-mode microresonator. Opt. Express 24, 265410 (2016)

    ADS  Google Scholar 

  55. Rokhsari, H., Vahala, K.J.: Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. Phys. Rev. Lett. 92, 253905 (2004)

    Article  ADS  Google Scholar 

  56. Monifi, F., Friedlein, J., Ozdemir, S.K., Yang, L.: A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator. J. Lightwave Technol. 30, 3306–3315 (2012)

    Article  ADS  Google Scholar 

  57. Maurer, P.C., Kucsko, G., Latta, C., Jiang, L., Yao, N.Y., Bennett, S.D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D.J., Cirac, J.I., Lukin, M.D.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  ADS  Google Scholar 

  58. Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)

    Article  ADS  Google Scholar 

  59. Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrueggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J.F., Neumann, P., Wrachtrup, J.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014)

    Article  ADS  Google Scholar 

  60. Pfaff, W., Hensen, B., Bernien, H., van Damm, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J., Hanson, R.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Childress, L.I., Taylor, J.M., Sorensen, A., Lukin, M.D.: Faulttolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 052330 (2005)

    Article  ADS  Google Scholar 

  62. Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Scharfenberger, B., Buczak, K., Nöauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014)

    Google Scholar 

  63. Barclay, P.E., Fu, K.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009)

    Article  ADS  Google Scholar 

  64. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanable, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)

    Article  ADS  Google Scholar 

  65. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., et al.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)

    Article  ADS  Google Scholar 

  66. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham, M., Twitchen, D.J., Childress, L., Hanson, R.: Heralded entanglement between solid-state qubits separated by three metres. Nature (London) 497, 86 (2013)

    Article  ADS  Google Scholar 

  67. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grants (No. 61671083 and No. 61471050), Beijing University of Posts and Telecommunications Excellent PhD Students Foundation (No. CX2016209), the Open Research Fund Program of State Key Laboratory of Low-Dimensional Quantum Physics (No.KF201610); and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiejun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Wang, T. & Wang, C. High-Dimensional Bell State Analysis for Photon-Atoms Hybrid System. Int J Theor Phys 58, 451–462 (2019). https://doi.org/10.1007/s10773-018-3945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3945-6

Keywords

Navigation