Skip to main content
Log in

Generic preparation and entanglement detection of equal superposition states

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum superposition is a fundamental principle of quantum mechanics, so it is not surprising that equal superposition states (ESS) serve as powerful resources for quantum information processing. In this work, we propose a quantum circuit that creates an arbitrary dimensional ESS. The circuit construction is efficient as the number of required elementary gates scales polynomially with the number of required qubits. For experimental realization of the method, we use techniques of nuclear magnetic resonance (NMR).We have succeeded in preparing a 9-dimensional ESS on a 4-qubit NMR quantum register. The full tomography indicates that the fidelity of our prepared state with respect to the ideal 9-dimensional ESS is over 96%. We also prove the prepared state is pseudo-entangled by directly measuring an entanglement witness operator. Our result can be useful for the implementation of those quantum algorithms that require an ESS as an input state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Grover, Science 280, 228 (1998).

    Article  Google Scholar 

  2. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  3. P. W. Shor, in Algorithms for quantum computation: Discrete logarithms and factoring: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE, New York, 1994), pp. 124–134.

  4. I. Chuang, R. Laflamme, P. Shor, and W. Zurek, arXiv: quantph/9503007.

  5. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).

    Article  ADS  Google Scholar 

  6. J. Li, X. Peng, J. Du, and D. Suter, Sci. Rep. 2, 260 (2012).

    Article  ADS  Google Scholar 

  7. L. Hales and S. Hallgren, in An improved quantum Fourier transform algorithm and applications: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (IEEE, Los Alamitos, 2000), pp. 515–525.

    Google Scholar 

  8. D. Coppersmith, arXiv: quant-ph/0201067.

  9. M. Mosca, and C. Zalka, Int. J. Quantum Inform. 2, 91 (2004).

    Article  Google Scholar 

  10. A. M. Childs, and W. van Dam, Rev. Mod. Phys. 82, 1 (2010).

    Article  ADS  Google Scholar 

  11. A. Y. Kitaev, arXiv: quant-ph/9511026.

  12. L. K. Grover, in A fast quantum mechanical algorithm for database search: Proceedings of the 28th annual ACM symposium on Theory of computing (ACM, 1996), pp. 212–219.

    Google Scholar 

  13. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Article  ADS  Google Scholar 

  14. L. K. Grover, Phys. Rev. Lett. 85, 1334 (2000).

    Article  ADS  Google Scholar 

  15. R. M. Gingrich, C. P. Williams, and N. J. Cerf, Phys. Rev. A 61, 052313 (2000).

    Article  ADS  Google Scholar 

  16. G. L. Long, and Y. Sun, Phys. Rev. A 64, 014303 (2001).

    Article  ADS  Google Scholar 

  17. Y. Liu, and G. L. Long, Int. J. Quantum Inform. 07, 567 (2009).

    Article  Google Scholar 

  18. Y. Long, G. R. Feng, J. Pearson, and G. L. Long, Sci. China-Phys. Mech. Astron. 57, 1256 (2014).

    Article  ADS  Google Scholar 

  19. M. Gao, F. C. Lei, C. G. Du, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 610301 (2016).

    Article  Google Scholar 

  20. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, Sci. Bull. 60, 96 (2015).

    Article  Google Scholar 

  21. Q. Lin, Sci. China-Phys. Mech. Astron. 58, 044201 (2015).

    ADS  Google Scholar 

  22. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  23. O. Ghne, and G. Tth, Phys. Rep. 474, 1 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).

    Article  Google Scholar 

  25. J. M. Cai, Sci. China-Phys. Mech. Astron. 60, 030331 (2017).

    Article  Google Scholar 

  26. T. T. Li, Sci. China Math. 59, 1 (2016).

    MathSciNet  Google Scholar 

  27. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

    Article  ADS  Google Scholar 

  28. M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 92, 087902 (2004).

    Article  ADS  Google Scholar 

  29. J. G. Filgueiras, T. O. Maciel, R. E. Auccaise, R. O. Vianna, R. S. Sarthour, and I. S. Oliveira, Quantum Inf. Process 11, 1883 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  30. L. M. K. Vandersypen, and I. L. Chuang, Rev. Mod. Phys. 76, 1037 (2005).

    Article  ADS  Google Scholar 

  31. M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons, Chichester, 2001).

    Google Scholar 

  32. X. Peng, X. Zhu, X. Fang, M. Feng, K. Gao, X. Yang, and M. Liu, Chem. Phys. Lett. 340, 509 (2001).

    Article  ADS  Google Scholar 

  33. J. S. Lee, Phys. Lett. A 305, 349 (2002).

    Article  ADS  Google Scholar 

  34. J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and J. Du, Phys. Rev. A 89, 022313 (2014).

    Article  ADS  Google Scholar 

  35. J. A. Smolin, J. M. Gambetta, and G. Smith, Phys. Rev. Lett. 108, 070502 (2012).

    Article  ADS  Google Scholar 

  36. C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R. Laflamme, Phys. Rev. A 78, 012328 (2008).

    Article  ADS  Google Scholar 

  37. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrggen, and S. J. Glaser, J. Magn. Resonance 172, 296 (2005).

    Article  ADS  Google Scholar 

  38. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (Grant Nos. 2013CB921800, and 2014CB848700), the National Natural Science Foundation of China (Grant Nos. 11425523, 11375167, 11575173, and 11227901), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01030400), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH004). The authors also thank ShenSen Zhao and LiHao Yang from University of Science and Technology of China for Python programming and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YanBao Zhang or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Zhang, Y., Li, J. et al. Generic preparation and entanglement detection of equal superposition states. Sci. China Phys. Mech. Astron. 60, 070313 (2017). https://doi.org/10.1007/s11433-017-9040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9040-3

Keywords

Navigation