Skip to main content
Log in

Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  4. Beaudry, N.J., Moroder, T., Lütkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101, 093601 (2008)

    Article  ADS  MATH  Google Scholar 

  5. Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78, 032302 (2008)

    Article  ADS  Google Scholar 

  6. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  7. Makarov*, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)

    Article  ADS  Google Scholar 

  8. Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)

    Article  ADS  Google Scholar 

  9. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  10. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  11. Branciard, C., Cavalcanti, E.G., Walborn, S.P., et al.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)

    Article  ADS  Google Scholar 

  12. Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)

    Article  ADS  Google Scholar 

  13. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  14. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  15. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  16. Tamaki, K., Lo, H.-K., et al.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  17. Tang, Y.-L., Yin, H.-L., Chen, S.-J., et al.: Field test of Measurement-Device-Independent quantum key distribution. IEEE J. Sel. Top. Quantum Electron. 21, 116–122 (2015)

    Article  Google Scholar 

  18. Tang, Y.-L., Yin, H.-L., Zhao, Q., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016)

    Google Scholar 

  19. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  20. Yin, H.-L., Wang, W.-L., Tang, Y.-L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)

    Article  ADS  Google Scholar 

  21. Wang, C., Wang, S., Yin, Z.-Q., et al.: Experimental measurement-device-independent quantum key distribution with uncharacterized encoding. Opt. Lett. 41, 5596–5599 (2016)

    Article  ADS  Google Scholar 

  22. Liu, Y., Chen, T.-Y., Wang, L.-J., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  23. Tang, G.-Z., Sun, S.-H., Xu, F., et al.: Experimental asymmetric Plug-and-Play Measurement-device-independent quantum key distribution. Phys. Rev. A 94, 032326 (2016)

    Article  ADS  Google Scholar 

  24. Tang, Z., Liao, Z., Xu, F., et al.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  25. Tang, Y.-L., Yin, H.-L., Chen, S.-J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)

    Article  ADS  Google Scholar 

  26. Laing, A., Scarani, V., Rarity, J.G., et al.: Reference frame independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)

    Article  ADS  Google Scholar 

  27. Wang, Z., Zhang, C., Huang, Y.-F., et al.: Experimental demonstration of genuine multipartite quantum nonlocality without shared reference frames. Phys. Rev. A 93, 032127 (2016)

    Article  ADS  Google Scholar 

  28. Palsson, M.S., Wallman, J.J., Bennet, A.J., et al.: Experimentally demonstrating reference-frame-independent violations of Bell inequalities. Phys. Rev. A 86, 032322 (2012)

    Article  ADS  Google Scholar 

  29. Zhang, P., Aungskunsiri, K., Martín-López, E., et al.: Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014)

    Article  ADS  Google Scholar 

  30. Wang, C., Song, X.-T., Yin, Z.-Q., et al.: Phase-Reference-Free Experiment of Measurement-Device-Independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    Article  ADS  Google Scholar 

  31. Wang, C., Sun, S.-H., Ma, X.-C., et al.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015)

    Article  ADS  Google Scholar 

  32. Pramanik, T., Park, B.K., Cho, Y.-W., Han, S.-W., Kim, Y.-S., Moon, S.: Robustness of reference-frame-independent quantum key distribution against the relative motion of the reference frames. Phys. Lett. A 381(31), 2497–2501 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sheridan, L., Le, T.P., Scarani, V.: Finite-key security against coherent attacks in quantum key distribution. New J. Phys. 12, 123019 (2010)

    Article  ADS  Google Scholar 

  34. Fang, X., Wang, C., Han, Y.-G., et al.: Tomographic approach in reference-frame-independent measurement-device-independent quantum key distribution. Commun. Theor. Phys. 66, 496 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Liang, W.-Y., Wang, S., Li, H.-W., et al.: Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding. Sci. Rep. 4, 3617 (2014)

    Article  Google Scholar 

  36. Thinh, L.P., Sheridan, L., Scarani, V.: Tomographic quantum cryptography protocols are reference frame independent. Int. J. Quantum Inf. 10, 1250035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Slater, J.A., Branciard, C., Brunner, N., et al.: Device-dependent and device-independent quantum key distribution without a shared reference frame. New J. Phys. 16, 043002 (2014)

    Article  ADS  Google Scholar 

  38. Yin, Z.-Q., Wang, S., Chen, W., et al.: Reference-free-independent quantum key distribution immune to detector side channel attacks. Quantum Inf. Process 13, 1237–1244 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wang, C., Yin, Z.-Q., Wang, S., et al.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)

    Article  Google Scholar 

  40. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 95, 032309 (2017)

    Article  ADS  Google Scholar 

  41. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases. J. Lightwave Technol. 35, 4574–4578 (2017)

    Article  ADS  Google Scholar 

  42. Xu, F.: Measurement-device-independent quantum communication with an untrusted source. Phys. Rev. A 92, 012333 (2015)

    Article  ADS  Google Scholar 

  43. Stucki, D., Gisin, N., Guinnard, O., et al.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 (2002)

    Article  ADS  Google Scholar 

  44. Liu, C.-Q., Zhu, C.-H., Wang, L.-H., et al.: Polarization-encoding-based measurement-device-independent quantum key distribution with a single untrusted source. Chin. Phys. Lett. 33, 100301 (2016)

    Article  ADS  Google Scholar 

  45. Choi, Y., Kwon, O., Woo, M., et al.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93, 032319 (2016)

    Article  ADS  Google Scholar 

  46. Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  47. Ribordy, G., Gautier, J.-D., Gisin, N., et al.: Fast and user-friendly quantum key distribution. J. Mod. Opt. 47, 517–531 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  49. Xu, F., Curty, M., Qi, B., et al.: Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 21, 148–158 (2015)

    Google Scholar 

  50. Inamori, H.: Security of practical time-reversed EPR quantum key distribution. Algorithmica 34, 340–365 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, Z.-W., Zhou, Y.-H., Wang, X.-B.: Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. arXiv:1410.3265 (2014)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61372076, 61701375, 61705048), Shaanxi Key Research and Development Program (Grant No. 2017GY-080), the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231), Foundation of Science and Technology on Communication Networks Laboratory (KX172600031) and the 111 Project (No. B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhu, C., Ma, S. et al. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source. Int J Theor Phys 57, 2192–2202 (2018). https://doi.org/10.1007/s10773-018-3743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3743-1

Keywords

Navigation