Skip to main content
Log in

Multi-Hop Teleportation of an Unknown Qubit State Based on W States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benatti, F., Fannes, M., Floreanini, R.: Quantum information, computation and cryptography. J. Phys. A Math. Theor. 808(28), 165–179 (2010)

    MathSciNet  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9(12), 832–836 (2015)

    Article  ADS  Google Scholar 

  4. Zhang, C.M., Li, M., Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China Phys. Mech. Astron. 58(9), 590301 (2015)

    Article  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3, A), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  7. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ohya, M., Volovich, I.: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Springer, Netherlands (2011)

    Book  MATH  Google Scholar 

  10. Choudhury, B.S., Dhara, A.: Teleportation protocol of three-qubit state using four-qubit quantum channels. Int. J. Theor. Phys. 55(7), 3393–3399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhury, B.S., Dhara, A.: A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55(4), 2275–2285 (2016)

    Article  MATH  Google Scholar 

  12. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  MATH  Google Scholar 

  13. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process 15(8), 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92(4), 042314 (2015)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  16. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a w state. New J. Phys. 5(20), 1765–1768 (2003)

    Google Scholar 

  17. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with w states. Phys. Rev. A 74(6), 154–154 (2006)

    Article  Google Scholar 

  18. Shi, B.S., Tomita, A.: Teleportation of an unknown state by w state. Phys. Lett. A 296(296), 161–164 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cao, Z.L., Song, W.: Teleportation of a two-particle entangled state via w class states. Phys. A Stat. Mech. Appl. 347, 177–183 (2005)

    Article  Google Scholar 

  20. Honjo, T., Nam, S.W., Takesue, H., Zhang, Q., Kamada, H., Nishida, Y., Tadanaga, O., Asobe, M., Baek, B., Hadfield, R.: Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16(23), 19118–19126 (2008)

    Article  ADS  Google Scholar 

  21. Meter, R.V.: Quantum networking and internetworking. IEEE Netw. 26(4), 59–64 (2012)

    Article  Google Scholar 

  22. Meter, R.V., Touch, J., Horsman, C.: Recursive quantum repeater networks. Ieice Electron. Express 8(8), 65–79 (2011)

    Google Scholar 

  23. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  24. Cheng, S.T., Wang, C.Y., Tao, M.H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Areas Commun. 23(7), 1424–1432 (2005)

    Article  Google Scholar 

  25. Zhou, L., Sheng, Y.B., Zhao, S.M.: Optimal entanglement concentration for three-photon W states with parity check measurement. Chin. Phys. B 22(2), 97–104 (2013)

    Article  Google Scholar 

  26. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58(4), 040303 (2015)

    Article  Google Scholar 

  27. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)

    Article  Google Scholar 

  28. Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59(10), 100315 (2016)

    Article  Google Scholar 

  29. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  30. Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary bell pairs and teleportation. Phys. Rev. A 89(2), 767–771 (2014)

    Google Scholar 

  31. Cai, X.F., Yu, X.T., Shi, L.H., Zhang, Z.C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)

    Article  Google Scholar 

  32. Xiong, P.Y., Yu, X.T., Zhan, H.T., Zhang, Z.C.: Multiple teleportation via partially entangled ghz state. Front. Phys. 11(4), 1–8 (2016)

    Article  ADS  Google Scholar 

  33. Yu, X.T., Zhang, Z.C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23(1), 66–73 (2014)

    Google Scholar 

  34. Gupta, M.K., Wilde, M.M.: Multiplicativity of completely bounded p-Norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Yu, X.T., Xu, J., Zhang, Z.C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 271–277 (2013)

    ADS  Google Scholar 

  36. Kurose, J.F., Ross, K.: Computer networking: a top-down approach featuring the internet. Network 18(142), 1–11 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61571105, Grant No. 61601120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XZ., Yu, XT. & Zhang, ZC. Multi-Hop Teleportation of an Unknown Qubit State Based on W States. Int J Theor Phys 57, 981–993 (2018). https://doi.org/10.1007/s10773-017-3631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3631-0

Keywords

Navigation