Skip to main content
Log in

On the Importance of Using Reliability Criteria in Photothermal Experiments for Accurate Thermophysical Property Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The theoretical and experimental foundations of some of the most common frequency-domain photothermal techniques for measuring thermophysical properties of materials are presented. Limitations of these methodologies when used without attention to satisfying the appropriate validity conditions are discussed and their consequences in providing inaccurate and often conflicting quantitative measurements are examined in the form of several case studies in photothermal thermophysics. The importance of adherence to experimental setup configurations and signal generation conditions consistent with photothermal theoretical models used to extract thermophysical properties (diffusivity, effusivity, optical absorption coefficient) is highlighted as an essential requirement for reliable thermophysical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. F.R. Lamastra, M.L. Grilli, G. Leahu, A. Belardini, R. Li Voti, C. Sibilia, D. Salvatori, I. Cacciotti, F. Nanni, Photoacoustic spectroscopy investigation of zinc oxide/diatom frustules hybrid powders. Int. J. Thermophys. 39, 110 (2018)

    Article  ADS  Google Scholar 

  2. L. Chrobak, M. Malínski, Transmission and absorption based photoacoustic methods of determination of the optical absorption spectra of Si samples-comparison. Solid State Commun. 149, 1600–1604 (2009)

    Article  ADS  Google Scholar 

  3. D.S. Volkov, O.B. Rogov, M.A. Proskurnin, Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter. Photoacoustics 17, 100151 (2020)

    Article  Google Scholar 

  4. A. Mandelis, Frequency-domain photopyroelectric spectroscopy of condensed phases (PPES): a new, simple and powerful spectroscopic technique. Chem. Phys. Lett. 108, 388–392 (1984)

    Article  ADS  Google Scholar 

  5. A.M. Olaizola, Photothermal determination of absorption and scattering spectra of silver nanoparticles. Appl. Spectrosc. 72, 234–240 (2018)

    Article  ADS  Google Scholar 

  6. R. Margaoan, C. Tripon, O. Bobis, V. Bonta, D. Dadarlat, Coexistence of phases in royal jelly detected by photopyroelectric calorimetry. Anal. Lett. 54, 1–14 (2021)

    Article  Google Scholar 

  7. M.G. Fernández-Olaya, A.P. Franco-Bacca, P.G. Martínez-Torres, M.A. Ruiz-Gómez, D. Meneses-Rodríguez, R. Li Voti, J.J. Alvarado-Gil, Thermal characterization of micrometric polymeric thin films by photoacoustic spectroscopy. Phys. Status Solidi RRL 17, 2300057 (2023)

    Article  Google Scholar 

  8. J.A. Balderas-Lopez, A. Mandelis, Photopyroelectric spectroscopy of pure fluids and liquid mixtures: foundations and state-of-the-art applications. Int. J. Thermophys. 41, 1–22 (2020)

    Article  Google Scholar 

  9. U. Zammit, F. Mercuri, S. Paoloni, M. Marinelli, R. Pizzoferrato, Simultaneous absolute measurements of the thermal diffusivity and the thermal effusivity in solids and liquids using photopyroelectric calorimetry. J. Appl. Phys. 117, 105104 (2015)

    Article  ADS  Google Scholar 

  10. J. Shen, A. Mandelis, B.D. Aloysius, Thermal-wave resonant-cavity measurements of the thermal diffusivity of air: a comparison between cavity-length and modulation-frequency scans. Int. J. Thermophys. 17, 1241–1254 (1996)

    Article  ADS  Google Scholar 

  11. U.O. Garcia-Vidal, J.L. Jimenez-Perez, G. Lopez-Gamboa, R. Gutierrez-Fuentes, J.F. Sánchez-Ramírez, Z.N. Correa-Pacheco, I.C. Romero-Ibarra, A. Cruz-Orea, Synthesis of compact and porous SiO2 nanoparticles and their effect on thermal conductivity enhancement of water-based nanofluids. Int. J. Thermophys. 44, 1–20 (2023)

    Article  ADS  Google Scholar 

  12. J.A. Balderas-López, A. Mandelis, Self-consistent photothermal techniques: application for measuring thermal diffusivity in vegetable oils. Rev. Sci. Instrum. 74, 700–702 (2003)

    Article  ADS  Google Scholar 

  13. O. Delgado-Vasallo, E. Marín, The application of the photoacoustic technique to the measurement of the thermal effusivity of liquids. J. Phys. D Appl. Phys. 32, 593–597 (1999)

    Article  ADS  Google Scholar 

  14. J.A. Balderas-López, Thermal effusivity measurements for liquids: A self-consistent photoacoustic methodology. Rev. Sci. Instrum. 78, 064901 (2007)

    Article  ADS  Google Scholar 

  15. A. Mandelis, M.M. Zver, Theory of photopyroelecric spectroscopy of solids. J. Appl. Phys. 57, 4421–4429 (1985)

    Article  ADS  Google Scholar 

  16. P. Abrica-González, J.A. Zamora-Justo, B.E. Chavez-Sandoval, G.R. Vázquez-Martínez, J.A. Balderas-López, Measurement of the optical properties of gold colloids by photoacoustic spectroscopy. Int. J. Thermophys. 39, 1–7 (2018)

    Article  Google Scholar 

  17. R. LiVoti, G. Leahu, C. Sibilia, R. Matassa, G. Familiari, S. Cerra, T.A. Salamonec, I. Fratoddi, Photoacoustics for listening to metal nanoparticle super-aggregates. Nanoscale Adv. 3, 4692–4701 (2021)

    Article  ADS  Google Scholar 

  18. A. Hordvik, H. Schlossberg, Photoacoustic technique for determining optical absorption coefficients in solids. Appl. Opt. 16, 101–107 (1977)

    Article  ADS  Google Scholar 

  19. M. Chirtoc, G. Mihailescu, Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys. Rev. B 40, 9606–9617 (1989)

    Article  ADS  Google Scholar 

  20. J.A. Balderas-López, Generalized 1D photopyroelectric technique for optical and thermal characterization of liquids. Meas. Sci. Technol. 23, 1–10 (2012)

    Article  Google Scholar 

  21. B. Li, D. Shaughnessy, A. Mandelis, J. Batista, J. Garcia, Accuracy of photocarrier radiometric measurement of electronic transport properties of ion-implanted silicon wafers. J. Appl. Phys. 96(1), 186–196 (2004)

    Article  ADS  Google Scholar 

  22. A. Matvienko, A. Mandelis, Theoretical analisis of PPE measurements in liquids using a thermal-wave cavity. Eur. Phys. J. Spec. Top. 153, 127–129 (2008)

    Article  Google Scholar 

  23. G. Pan, A. Mandelis, Measurements of the thermodynamic equation of state via the pressure dependence of thermophysical properties of air by a thermal-wave resonant cavity. Rev. Sci. Instrum. 69, 2918–2923 (1998)

    Article  ADS  Google Scholar 

  24. C.H. Wang, A. Mandelis, Measurement of thermal diffusivity of air using photopyroelectric interferometry. Rev. Sci. Instrum. 70, 2372–2378 (1999)

    Article  ADS  Google Scholar 

  25. A. Somer, F. Camilotti, G.F. Costa, C. Bonardi, A. Novatski, A.V.C. Andrade, V.A. Kozlowski Jr., G.K. Cruz, The thermoelastic bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique. J. Appl. Phys. 114, 063503 (2013)

    Article  ADS  Google Scholar 

  26. K. Strzałkowski, M. Pawlak, S. Kulesza, D. Dadarlat, M. Streza, Effect of the surface roughness on the measured thermal diffusivity of the ZnBeMnSe single-crystalline solids. Appl. Phys. A 125, 459 (2019)

    Article  ADS  Google Scholar 

  27. N. Bennaji, I. Mellouki, N. Yacoubi, Thermal properties of metals using electro-pyroelectric technique. Sens. Lett. 7, 1–5 (2009)

    Article  Google Scholar 

  28. J.A. Balderas-López, A. Mandelis, J.A. García, Normalized photoacoustic techniques for thermal diffusivity measurements of buried layers in multilayered systems. J. Appl. Phys. 92, 3047–3055 (2002)

    Article  ADS  Google Scholar 

  29. J.A. Balderas-López, Generalized expression for the self-normalized signal in photothermal experiments for multilayered materials in the frequency domain. J. Appl. Phys. 132, 055104 (2022)

    Article  ADS  Google Scholar 

  30. J.A. Balderas-López, A. Mandelis, Self-normalized photothermal technique for accurate thermal diffusivity measurements in thin metal layers. Rev. Sci. Instrum. 74(12), 5219–5225 (2003)

    Article  ADS  Google Scholar 

  31. J.R.D. Pereira, A.J. Palangana, A.M. Mansanares, E.C. da Silva, A.C. Bento, M.L. Baesso, Inversion in the change of the refractive index and memory effect near the nematic-isotropic phase transition in a lyotropic liquid cristal. Phys. Rev. E 61(5), 5410–5413 (2000)

    Article  ADS  Google Scholar 

  32. J.M. Yáñez-Limón, R. Mayen-Mondragón, O. Martínez-Flores, R. Flores-Farias, F. Ruíz, C. Araujo-Andrade, J.R. Martínez, Thermal diffusivity studies in edible commercial oils using thermal lens spectroscopy. Superficies y Vacío 18(1), 31–37 (2005)

    Google Scholar 

  33. A. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, G. Saab-Rincón, J.L. Jiménez-Pérez, Thermal diffusivity monitoring during the stages of formation of core–shell structures of SiO2@Au. Appl. Phys. A 126, 1–11 (2020)

    Article  Google Scholar 

  34. Á. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, D. Cornejo-Monroy, G. López-Gamboa, Z.N. Correa-Pacheco, Study of the thermal difusivity of nanofuids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl. Phys. A 125, 1–9 (2019)

    Article  Google Scholar 

  35. J. Shen, A. Mandelis, Thermal-wave resonator cavity. Rev. Sci. Instrum. 66, 4999–5005 (1995)

    Article  ADS  Google Scholar 

  36. J.A. Balderas-López, A. Mandelis, J.A. Garcia, Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev. Sci. Instrum. 71, 2933–2937 (2000)

    Article  ADS  Google Scholar 

  37. J.A. Balderas-López, M.R. Jaime-Fonseca, G. Gálvez-Coyt, A. Muñoz-Diosdado, J. Díaz-Reyes, Generalized Photopyroelectric Setup for Thermal-Diffusivity Measurements of Liquids. Int. J. Thermophys. 36, 857–861 (2015)

    Article  ADS  Google Scholar 

  38. M. Noroozi, B. Mohammadi, S. Radiman, A. Zakaria, Thermal Wavelength Measurement of Nanofluid in an Optical-Fiber Thermal Wave Cavity Technique to Determine the Thermal Diffusivity. Sci. World J., Vol. 2018, Article ID 9458952, 1–9 (2018).

  39. A. Matvienko, A. Mandelis, High-precision and high-resolution measurements of thermal diffusivity and infrared emissivity of water-methanol mixtures using a pyroelectric thermal wave resonator cavity: frequency-scan approach. Int. J. Thermophys. 26(3), 837–854 (2005)

    Article  ADS  Google Scholar 

  40. J.A. Balderas-López, A. Mandelis, Novel transmission open photoacoustic cell configuration for thermal diffusivity measurements in liquids. Int. J. Thermophys. 23(3), 605–614 (2001)

    Article  Google Scholar 

  41. G.A. López Muñoz, R.F. López González, J.A. Balderas López, L. Martínez-Pérez, Thermal-diffusivity measurements of mexican citrus essential oils using photoacoustic methodology in the transmission configuration. Int. J. Thermophys. 32, 1006–1012 (2011)

    Article  ADS  Google Scholar 

  42. G.A. López-Muñoz, J.A. Pescador-Rojas, J. Ortega-Lopez, J. SantoyoSalazar, J.A. Balderas-López, Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations. Nanoscale Res. Lett. 7, 1–6 (2012)

    Google Scholar 

  43. D. Dadarlat, M. Nicolae Pop, M. Streza, S. Longuemart, M. Depriester, A.H. Sahraoui, V. Simon, Combined FPPE–PTR calorimetry involving TWRC technique II. Experimental: application to thermal effusivity measurements of solids. Int. J. Thermophys. 32, 2092–2101 (2011)

    Article  ADS  Google Scholar 

  44. J.A. Balderas-López, M.R. Jaime-Fonseca, J. Díaz-Reyes, Y.M. Gómez-Gómez, M.E. Bautista-Ramírez, A. Muñoz-Diosdado, G. Gálvez-Coyt, Photopyroelectric technique, in the thermally thin regime, for thermal effusivity measurements of liquids. Braz. J. Phys. 46, 105–110 (2016)

    Article  ADS  Google Scholar 

  45. D. Bicanic, I. Vrbic, J. Cozijnsen, S. Lemić, O. Dóka, Sensing the heat of tomato products red: the new approach to the objective assessment of their color. Food Biophys. 1, 14–20 (2006)

    Article  Google Scholar 

  46. D. Dimitrovskia, D. Bicanic, S. Luterotti, C. van Twiske, J.G. Buijnsters, O. Dóka, The concentration of trans-lycopene in postharvest watermelon: an evaluation of analytical data obtained by direct methods. Postharvest Biol. Technol. 58, 21–28 (2010)

    Article  Google Scholar 

  47. O. Delgado-Vasallo, A.C. Valdés, E. Marín, J.A.P. Lima, M.G. da Silva, M. Stehl, H. Vargas, S.L. Cardoso, Optical and thermal properties of liquids measured by means of an open photoacoustic cell. Meas. Sci. Technol. 11, 412–417 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.M. gratefully acknowledges the Natural Sciences and Engineering Research Council (NSERC) Discovery Grants Program (RGPIN-2020-04595) and the Canada Foundation for Innovation (CFI) Research Chairs Program (950-230876).

Funding

The financial support of Natural Science and Engineering Research Council of Canada and Canadian Foundation for Innovation is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B.-L. proposed the general ideas about the topics in the manuscript and wrote the first version, M.R.J.-F. wrote and discussed some topics of the manuscript, particularly the theory section and revise the English redaction, P.A.-G. wrote and discussed some topics of the manuscript, particularly the experimental section, A.M. made a general revision of the content, especially the theory and experimental sections and refine the style of the manuscript

Corresponding author

Correspondence to A. Mandelis.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue on Transport Property Measurements in Research and Industry.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balderas-López, J.A., Jaime-Fonseca, M.R., Abrica-González, P. et al. On the Importance of Using Reliability Criteria in Photothermal Experiments for Accurate Thermophysical Property Measurements. Int J Thermophys 45, 56 (2024). https://doi.org/10.1007/s10765-024-03348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03348-w

Keywords

Navigation