Skip to main content

Advertisement

Log in

Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A Correction to this article was published on 24 February 2023

This article has been updated

Abstract

A new wide-ranging correlation for the viscosity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with an existing equation of state, and it is valid from the triple point to 750 K, at pressures up to 86 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) varies depending on the temperature and pressure, from 0.2 % to 3.6 %. A term accounting for the critical enhancement is also included. The correlation behaves in a physically reasonable manner when extrapolated to 200 MPa; however, care should be taken when using the correlations outside of the validated range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. C.M. Tsolakidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 46, 023103 (2017)

    ADS  Google Scholar 

  2. M.L. Huber, M.J. Assael, Int. J. Refrig. 71, 39 (2016)

    Google Scholar 

  3. M.J. Assael, T.B. Papalas, M.L. Huber, J. Phys. Chem. Ref. Data 46, 033103 (2017)

    ADS  Google Scholar 

  4. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 43, 033103 (2014)

    ADS  Google Scholar 

  5. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 44, 033101 (2015)

    ADS  Google Scholar 

  6. E.K. Michailidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 42, 033104 (2013)

    ADS  Google Scholar 

  7. E.K. Michailidou, M.J. Assael, M.L. Huber, I.M. Abdulagatov, R.A. Perkins, J. Phys. Chem. Ref. Data 43, 023103 (2014)

    ADS  Google Scholar 

  8. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 023102 (2018)

    ADS  Google Scholar 

  9. H.J.M. Hanley, R.D. McCarty, W.M. Haynes, J. Phys. Chem. Ref. Data 3, 979 (1974)

    ADS  Google Scholar 

  10. M.L. Huber, Models for viscosity, thermal conductivity, and surface tension of selected fluids as implemented in REFPROP v10.0, NISTIR 8209, https://doi.org/10.6028/NIST.IR.8209. (2018)

  11. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10.0. (2018)

  12. M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, J. Phys. Chem. Ref. Data 47, 021501 (2018)

    ADS  Google Scholar 

  13. D.G. Friend, J.C. Rainwater, Chem. Phys. Lett. 107, 590 (1984)

    ADS  Google Scholar 

  14. J.C. Rainwater, D.G. Friend, Phys. Rev. A 36, 4062 (1987)

    ADS  Google Scholar 

  15. E. Bich, E. Vogel, Transport Properties of Fluids. Their Correlation Prediction and Estimation (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  16. V. Vesovic, W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson, J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990)

    ADS  Google Scholar 

  17. S. Hendl, J. Millat, E. Vogel, V. Vesovic, W.A. Wakeham, J. Luettmer-Strathmann, J.V. Sengers, M.J. Assael, Int. J. Thermophys. 15, 1 (1994)

    ADS  Google Scholar 

  18. J.K. Bhattacharjee, R.A. Ferrell, R.S. Basu, J.V. Sengers, Phys. Rev. A 24, 1469 (1981)

    ADS  Google Scholar 

  19. R. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, NASA Technical Report R-132, Cleveland OH (1962)

  20. B. Najafi, E.A. Mason, J. Kestin, Physica 119A, 387 (1983)

    ADS  Google Scholar 

  21. N.B. Vargaftik, Y.D. Vasilevskaya, J. Eng. Phy. 46, 30 (1984)

    Google Scholar 

  22. E. Bich, J. Millat, E. Vogel, J. Phys. Chem. Ref. Data 19, 1289 (1990)

    ADS  Google Scholar 

  23. R.F. Berg, M.R. Moldover, G.A. Zimmerli, Phys. Rev. E 60, 4079 (1999)

    ADS  Google Scholar 

  24. E.F. May, R.F. Berg, M.R. Moldover, Int. J. Thermophys. 28, 1085 (2007)

    ADS  Google Scholar 

  25. R.F. Berg, M.R. Moldover, J. Phys. Chem. Ref. Data 41, 043104 (2012)

    ADS  Google Scholar 

  26. E. Vogel, Int. J. Thermophys. 37, 63 (2016)

    ADS  Google Scholar 

  27. E. Vogel, Ber. Bunsenges. Phys. Chem. 88, 997 (1984)

    Google Scholar 

  28. R. Hellmann, B. Jager, E. Bich, J. Chem. Phys. 147, 034304 (2017)

    ADS  Google Scholar 

  29. X. Xiao, D. Rowland, S.Z.S. AlGhafri, E.F. May, J. Phys. Chem. Ref. Data 49, 013101 (2020)

    ADS  Google Scholar 

  30. X. Xiao, D. Rowland, S.Z.S. Al Ghafri, E.F. May, J. Phys. Chem. Ref. Data 49, 029901 (2020)

    ADS  Google Scholar 

  31. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    ADS  Google Scholar 

  32. H. Lin, J. Che, J.T. Zhang, X.J. Feng, Fluid Phase Equil. 418, 198 (2016)

    Google Scholar 

  33. J. Kestin, S.T. Ro, W.A. Wakeham, J. Chem. Phys. 56, 4119 (1972)

    ADS  Google Scholar 

  34. J. Kestin, H.E. Khalifa, W.A. Wakeham, Physica 90A, 215 (1978)

    ADS  Google Scholar 

  35. M. Rigby, E.B. Smith, Trans. Faraday Soc. 62, 54 (1966)

    Google Scholar 

  36. R.A. Dawe, E.B. Smith, J. Chem. Phys. 52, 693 (1970)

    ADS  Google Scholar 

  37. A.G. Clarke, E.B. Smith, J. Chem. Phys. 48, 3988 (1968)

    ADS  Google Scholar 

  38. E. Thornton, Proc. Phys. Soc. 76, 104 (1960)

    ADS  Google Scholar 

  39. M. Goldblatt, W.E. Wageman, Phys. Fluids 14, 1024 (1971)

    ADS  Google Scholar 

  40. S.A. Ulybin, V.L. Makarushkin, Teplofiz. Vys. Temp. 15, 509 (1977)

    Google Scholar 

  41. N.J. Trappeniers, A. Botzen, C.A. Ten Seldam, H.R. van den Berg, J. van Oosten, Physica 31, 1681 (1965)

    ADS  Google Scholar 

  42. E.G. Reynes, G. Thodos, Physica 30, 1529 (1964)

    ADS  Google Scholar 

  43. S.P. Grisnik, NASA/TM-208409, AIAA-98-3498, 34th Joint Prop. Conf., Cleveland, Ohio, July 12-15 (1998)

  44. P. Malbrunot, A. Boyer, E. Charles, H. Abachi, Phys. Rev. A 27, 1523 (1983)

    ADS  Google Scholar 

  45. B.Y. Baharudin, D.A. Jackson, P.E. Schoen, Phys. Lett. 51A, 409 (1975)

    ADS  Google Scholar 

  46. H.J. Strumpf, A.F. Collings, C.J. Pings, J. Chem. Phys. 60, 3109 (1974)

    ADS  Google Scholar 

  47. J. Zollweg, G. Hawkins, G.B. Benedek, Phys. Rev. Lett. 27, 1182 (1971)

    ADS  Google Scholar 

  48. J.C. Legros, G. Thomaes, Physica 31, 703 (1965)

    ADS  Google Scholar 

  49. J. Kestin, W. Leidenfrost, Physica 25, 1033 (1959)

    ADS  Google Scholar 

  50. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Google Scholar 

  51. K.D. Hill, A.G. Steele, Metrologia 42, 278 (2005)

    ADS  Google Scholar 

  52. P.P.M. Steur, P.M.C. Rourke, D. Giraudi, Metrologia 56, 015008 (2019)

    ADS  Google Scholar 

  53. Ε Vogel, C. Küchenmeister, Ε Bich, A. Laesecke, J. Phys. Chem. Ref. Data 27, 947 (1998)

    ADS  Google Scholar 

  54. E. Vogel, E. Bich, R. Nimz, Phys. A 139, 188 (1986)

    Google Scholar 

  55. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Int. J. Thermophys. 13, 269 (1992)

    ADS  Google Scholar 

  56. EUREQA Formulize v.098.1 (Nutonian Inc, Cambridge MA, USA, 2012)—Commercial equipment, instruments, or materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

  57. R.F. Berg, M.R. Moldover, J. Chem. Phys. 93, 1926 (1990)

    ADS  Google Scholar 

  58. J.K. Bhattacharjee, R.A. Ferrell, Phys. Rev. A 27, 1544 (1983)

    ADS  Google Scholar 

  59. M.L. Huber, R.A. Perkins, A. Laesecke, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, E. Vogel, R. Mares, K. Miyagawa, J. Phys. Chem. Ref. Data 38, 101 (2009)

    ADS  Google Scholar 

  60. J.V. Sengers, R.A. Perkins, M.L. Huber, D.G. Friend, Int. J. Thermophys. 30, 374 (2009)

    ADS  Google Scholar 

  61. M.J. Assael, S.A. Monogenidou, M.L. Huber, R.A. Perkins, J.V. Sengers, J. Phys. Chem. Ref. Data, to be submitted (2021)

  62. J.V. Sengers, R.A. Perkins, Fluids near critical points, in Experimental Thermodyamics Volume IX Advances in Transport Properties of Fluids. (Royal Society of Chemistry, Cambridge, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Assael.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velliadou, D., Tasidou, K.A., Antoniadis, K.D. et al. Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa. Int J Thermophys 42, 74 (2021). https://doi.org/10.1007/s10765-021-02818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02818-9

Keywords

Navigation