Skip to main content
Log in

Thermodynamic Properties and Equation of State for Solid and Liquid Silver

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

High-temperature equations of state (EoS) for solid and liquid silver were constructed using experimental data on the thermodynamic properties, thermal expansion, compressibility, bulk compression modulus and sound velocity, supplemented with the phase diagram data (melting curve). The totality of experimental data was optimized using the temperature-dependent Tait equation over a pressure range of up to ~ 1000 kbar and over a temperature range from 20 K to the melting point for solid silver and to 4400 K for liquid silver. The temperature dependence of thermodynamic and thermophysical parameters for solid silver was described by an extended Einstein model. For liquid silver, the heat capacity was assumed constant over the specified temperature range, and the temperature dependence of density was described by a quadratic relationship. The isothermal bulk modulus and its pressure derivative were estimated by the Tait equation to be 1083.9 kbar, 5.8704 (for solid silver) and 809.84 kbar, 7.7044 (for liquid silver). The obtained values suggest a considerably greater compressibility of the liquid phase. The derived Tait EoS for the solid and liquid phases gives a good fit to the whole set of available experimental data within the measurement error of individual parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. M.I. McMahon, R.J. Nelmes, Chem. Soc. Rev. 35, 943 (2006)

    Article  Google Scholar 

  2. E.F. O’Bannon, M.J. Lipp, J.S. Smith, Y. Meng, P. Söderlind, D. Young, Z.S. Jenei, J. Appl. Phys. 129, 125901 (2021)

    Article  ADS  Google Scholar 

  3. P. Yue, X. Long, X. Jiang, Z. Zhang, Propell. Explos. Pyrot. 45, 600 (2020)

    Article  Google Scholar 

  4. R.D. Cowan, W. Fickett, J. Chem. Phys. 24, 932 (1956)

    Article  ADS  Google Scholar 

  5. M. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, H. Hoglund, H. Yokokawa, CALPHAD 19, 437 (1995)

    Article  Google Scholar 

  6. G.F. Voronin, I.B. Kutsenok, J. Chem. Eng. Data. 58, 2083 (2013)

    Article  Google Scholar 

  7. P. Jacobson, S. Stoupin, Diam. Relat. Mat. 97, 107469 (2019)

    Article  Google Scholar 

  8. C.E. Wicks, F.E. Block, Thermodynamic properties of 65 elements—their oxides, halides, carbides, and nitrides (US Bureau of Mines, Washington, 1963)

    Google Scholar 

  9. J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA key values for thermodynamics (Hemisphere Publishing Corp., New York, 1989)

    Google Scholar 

  10. I. Barin, Thermochemical data of pure substances (VCH Verlagsgesellschaft mbH, Weinheim, 1995)

    Book  Google Scholar 

  11. J.W. Arblaster, J. Phase Equilib. Diff. 36, 573 (2015)

    Article  Google Scholar 

  12. J.R. MacDonald, Rev. Mod. Phys. 41, 316 (1969)

    Article  ADS  Google Scholar 

  13. J.H. Dymond, R. Malhotra, Int. J. Thermophys. 9, 941 (1988)

    Article  ADS  Google Scholar 

  14. H. Preston-Thomas, Metrologia. 27, 3 (1990)

    Article  ADS  Google Scholar 

  15. G. Deffrennes, B. Oudot, A CALPHAD 74, 102291 (2021)

    Article  Google Scholar 

  16. N.V. Kozyrev, Int. J. Thermophys. 44, 31 (2023)

    Article  ADS  Google Scholar 

  17. A.T. Dinsdale, CALPHAD 15, 317 (1991)

    Article  Google Scholar 

  18. Y. Chang, W. Oates, Materials thermodynamics (Wiley, New York, 2010)

    Google Scholar 

  19. G.T. Furukawa, W.G. Saba, M.L. Reilly, Critical analysis of the heat-capacity data of the literature and evaluation of thermodynamic properties of copper, silver and gold from 0 to 300 K (National Standard Reference Data Series. N.B.S. NSRDS-NBS 18. 1968)

  20. D.E. Gray, American institute of physics handbook (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  21. L.B. Pankratz, J.M. Stuve, N.A. Gokcen, Thermodynamic data for mineral technology (US Bureau of Mines, Washington, 1984)

    Google Scholar 

  22. I.S. Grigoriev, E.Z. Meilikhov, Handbook of physical quantities (CRC Press, Boca Raton, 1996)

    Google Scholar 

  23. J.W. Arblaster, Selected values of the crystallographic properties of the elements (ASM International, Materials Park, 2018)

    Google Scholar 

  24. S.I. Novikova, Thermal expansion of solids (Izdatel’stvo Nauka, Moscow, 1974). [In Russian]

    Google Scholar 

  25. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermophysical properties of matter (IFI/Plenum, New York, 1975)

    Google Scholar 

  26. S.N. Vaidya, G.C. Kennedy, J. Phys. Chem. Solids. 31, 2329 (1970)

    Article  ADS  Google Scholar 

  27. K. Syassen, W.B. Holzapfel, J. Appl. Phys. 49, 4427 (1978)

    Article  ADS  Google Scholar 

  28. L. Liu, W.A. Bassett, J. Appl. Phys. 44, 1475 (1973)

    Article  ADS  Google Scholar 

  29. E.A. Perez-Albuerne, K.F. Forsgren, H.G. Drickamer, Rev. Sci. Instrum. 35, 29 (1964)

    Article  ADS  Google Scholar 

  30. H.K. Mao, P.M. Bell, J.W. Shaner, D.J. Steinberg, J. Appl. Phys. 49, 3276 (1978)

    Article  ADS  Google Scholar 

  31. A. Dewaele, M. Torren, P. Loubeyre, M. Mezouar, Phys. Rev. B 78, 104102 (2008)

    Article  ADS  Google Scholar 

  32. Y. Akahama, H. Kawamura, A.K. Singh, J. Appl. Phys. 95, 4767 (2004)

    Article  ADS  Google Scholar 

  33. W.J. Carter, S.P. Marsh, J.N. Fritz, R.G. McQueen, The equation of state of selected materials for high-pressure references, in Accurate characterization of the high pressure environment. ed. by E.C. Lloyd (N.B.S. Spec. Pub. 326, Washington, 1971), p.147

    Google Scholar 

  34. L.V. Al’tshuler, S.E. Brusnikin, E.A. Kuz’menkov, J. Appl. Mech. Tech. Phys. 28, 129 (1987)

    Article  ADS  Google Scholar 

  35. J. Xie, S.P. Chen, S. de Gironcoli, S. Baroni, Philos. Mag. B 79, 911 (1999)

    Article  ADS  Google Scholar 

  36. P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov, Geodyn. Tectonophys. 3, 129 (2012)

    Article  Google Scholar 

  37. R. Hrubiak, Exploring thermal and mechanical properties of selected transition elements under extreme conditions: Experiments at high pressures and high temperatures (Ph.D. dissertation, Florida Int. Univ. Miami, Florida, 2012)

  38. S.R. Baty, L. Burakovsky, D. Errandonea, J. Phys. Condens. Mat. 33, 485901 (2021)

    Article  Google Scholar 

  39. S.-N. Shim, T.S. Duffy, T. Kenichi, Earth Planet. Sci. Lett. 203, 729 (2002)

    Article  ADS  Google Scholar 

  40. A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, M. Mezouar, Nat. Commun. 9, 2913 (2018)

    Article  ADS  Google Scholar 

  41. S.M. Dorfman, V.B. Prakapenka, Y. Meng, T.S. Duffy, J. Geophys. Res. 117, 08210 (2012)

    ADS  Google Scholar 

  42. R. Bacon, C.S. Smith, Acta Metall. 4, 337 (1956)

    Article  Google Scholar 

  43. J.R. Neighbours, G.A. Alers, Phys. Rev. 111, 707 (1958)

    Article  ADS  Google Scholar 

  44. S.N. Biswas, P. Van’t Klooster, N.J. Trappeniers, Phys. B&C 103, 235 (1981)

    Article  Google Scholar 

  45. Y.A. Chang, L. Himmel, J. Appl. Phys. 37, 3567 (1966)

    Article  ADS  Google Scholar 

  46. L.E. Kinsler, A.R. Fray, A.B. Coppens, J.V. Sanders, Fundamentals of acoustics (Wiley, New York, 2000)

    Google Scholar 

  47. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, High. Temp. High Press. 41, 161 (2012)

    Google Scholar 

  48. W.M. Haynes, D.R. Lide, T.J. Bruno, The CRC handbook of chemistry and physics, 95th edn. (CRC Press/Taylor and Francis, Boca Raton, 2014)

    Book  Google Scholar 

  49. T. Iida, R.I.L. Guthrie, The thermophysical properties of metallic liquids (Oxford University Press, New York, 2015)

    Book  Google Scholar 

  50. C.L. Yaws, Density of liquid-inorganic compounds, in Thermophysical properties of chemicals and hydrocarbons. ed. by E.C. Lloyd (Elsevier Inc., Amsterdam, 2015), p.257

    Google Scholar 

  51. I. Lauermann, G. Metzger, Z Phys. Chem. 216O, 37 (1961)

    Article  Google Scholar 

  52. A.D. Kirshenbaum, J.A. Cahill, A.V. Grosse, J. Inorg. Nucl. Chem. 24, 333 (1962)

    Article  Google Scholar 

  53. L.-D. Lucas, Mem. Scientif. Rev. Metall. 61, 1 (1964)

    Article  Google Scholar 

  54. M. Wobst, R. Rentzsch, Z. Phys. Chem. 240O, 36 (1969)

    Article  Google Scholar 

  55. G. Bernard, C.H.P. Lupis, Metall. Mater. Trans. B 2, 555 (1971)

    Article  ADS  Google Scholar 

  56. L. Martin-Garin, M. Gomez, P. Benon, P. Desre, J. Less-Common Met. 41, 65 (1975)

    Article  Google Scholar 

  57. K. Nogi, K. Oishi, K. Ogino, Mater. Trans. 30, 137 (1989)

    Article  Google Scholar 

  58. S.V. Stankus, P.V. Tyagelsky, Russ J. Eng. Thermophys. 2, 93 (1992)

    Google Scholar 

  59. Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, K. Ishida, J. Electron. Mater. 30, 1120 (2001)

    Article  ADS  Google Scholar 

  60. W. Gasior, J. Pstrus, Z. Moser, A. Krzyzak, K. Fitzner, J. Phase Equilib. 24, 40 (2003)

    Article  Google Scholar 

  61. M. Kucharski, P. Fima, Monatsh Chem. 136, 1841 (2005)

    Article  Google Scholar 

  62. R.N. Abdullaev, R.A. Khairulin, S.V. Stankus, J. Phys. Conf. Ser. 1677, 012161 (2020)

    Article  Google Scholar 

  63. S. Blairs, Int. Mater. Rev. 52, 321 (2007)

    Article  Google Scholar 

  64. M.B. Gitis, I.G. Mikhailov, Akusticheskii Zhurnal 11, 434 (1965). [In Russian]

    Google Scholar 

  65. S.I. Filippov, N.B. Kazakov, L.A. Pronin, Izv. Vyssh. Ucheb Zaved. Chern. Met. 9, 8 (1966). [In Russian]

    Google Scholar 

  66. M.B. Gitis, I.G. Mikhailov, Akusticheskii Zhurnal 12, 145 (1966). [In Russian]

    Google Scholar 

  67. Y. Tsu, H. Suenaga, K. Takano, Y. Shiraishi, T. Jpn. I. Met. 23, 1 (1982)

    Google Scholar 

  68. Y. Tsuchiya, J. Non-Cryst. Solids 205–207, 94 (1996)

    Article  ADS  Google Scholar 

  69. P.S. Popel, V.E. Sidorov, D.A. Yagodin, G.M. Sivkov, A.G. Mozgovoj, 17th European on conference thermophysical properties (University of Pau, Bratislava, 2005), p.242

    Google Scholar 

  70. P.W. Mirwald, G.C. Kennedy, J. Geophys. Res. 84, 6750 (1979)

    Article  ADS  Google Scholar 

  71. J. Akella, G.C. Kennedy, J. Geophys. Res. 76, 4969 (1971)

    Article  ADS  Google Scholar 

  72. N.R. Mitra, D.L. Decker, H.B. Vaneleeti, Phys. Rev. 161, 613 (1967)

    Article  ADS  Google Scholar 

  73. D. Errandonea, J. Appl. Phys. 108, 033517 (2010)

    Article  ADS  Google Scholar 

  74. N.A. Smirnov, Phys. Rev. B 103, 064107 (2021)

    Article  ADS  Google Scholar 

  75. N.V. Nghia, N.D. Chinh, H.K. Hieu, Vacuum. 202, 111189 (2022)

    Article  ADS  Google Scholar 

  76. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  MathSciNet  Google Scholar 

  77. D.A. Young, H. Cynn, P. Söderlind, A. Landa, J. Phys. Chem. Ref. Data. 45, 043101 (2016)

    Article  ADS  Google Scholar 

  78. A.K. Giri, G.B. Mitra, J. Phys. D Appl. Phys. 18, L75–L78 (1985)

    Article  ADS  Google Scholar 

  79. W.B. Holzapfel, M.F. Nicol, High Press. Res. 27, 377 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was performed under the auspices of the Ministry of Science and Higher Education of the Russian Federation (Contract No. FUFE-2021-0005 (0308-2021-0005)).

Author information

Authors and Affiliations

Authors

Contributions

The author solely contributed to the manuscript.

Corresponding author

Correspondence to Nikolay V. Kozyrev.

Ethics declarations

Competing Interests

The author declares no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, N.V. Thermodynamic Properties and Equation of State for Solid and Liquid Silver. Int J Thermophys 44, 143 (2023). https://doi.org/10.1007/s10765-023-03251-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03251-w

Keywords

Navigation