Skip to main content
Log in

Studies of the Ag-In phase diagram and surface tension measurements

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The phase boundaries of the Ag-In binary system were determined by the diffusion couple method, differential scanning calorimetry (DSC) and metallographic techniques. The results show that the region of the (hcp) phase is narrower than that reported previously. Thermodynamic calculation of the Ag-In system is presented by taking into account the experimental results obtained by the present and previous works, including the data on the phase equilibria and thermochemical properties. The Gibbs energies of liquid and solid solution phases are described on the basis of the sub-regular solution model, and that of the intermetallic compounds are based on the two-sublattices model. A consistent set of thermodynamic parameters has been optimized for describing the Gibbs energy of each phase, which leads to a good fit between calculated and experimental results. The maximum bubble pressure method has been used to measure the surface tension and densities of liquid In, Ag, and five binary alloys in the temperature range from 227°C to about 1170°C. ON the basis of the thermodynamic parameters of the liquid phase obtained by the present optimization, the surface tensions are calculated using Butler’s model. It is shown that the calculated values of the surface tensions are in fair agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Baren, Indium Alloys and their Engineering Applications, ed. C.E.T. White and H. Okamoto (Materials Park, OH: ASM Intl., 1993), p. 15.

    Google Scholar 

  2. F. Weibke, A. Anorg. Chem. 222, 145 (1935).

    Article  CAS  Google Scholar 

  3. E. Hellner, Z. Metallkd. 42, 17 (1951).

    CAS  Google Scholar 

  4. L.L. Frevel and E. Ott, J. Am. Chem. Soc. 57, 228 (1935).

    Article  CAS  Google Scholar 

  5. A.N. Campbell, Can. J. Chem. 48, 1703 (1970).

    Article  CAS  Google Scholar 

  6. O.J. Kleppa, J. Phys. Chem. 60, 846 (1956).

    Article  CAS  Google Scholar 

  7. L.R. Orr and R. Hultgren, J. Phys. Chem. 65, 378 (1961).

    Article  CAS  Google Scholar 

  8. T. Nozaki, Mater. Trans. JIM 7, 52 (1966).

    Google Scholar 

  9. R. Beja, C.R. Acad. Sci. 267C, 123 (1968).

    Google Scholar 

  10. C.B. Alcock, Acta Metall. 17, 839 (1969).

    Article  CAS  Google Scholar 

  11. R. Castanet, J. Chim. Phys. 67, 789 (1970).

    CAS  Google Scholar 

  12. B. Predel and U. Schallner, Z. Metallkd. 63, 341 (1972).

    CAS  Google Scholar 

  13. D.B. Masson, Metall. Trans. A 4A, 991 (1973).

    Google Scholar 

  14. C.B. Alcock, Acta Metall. 21, 1003 (1973).

    Article  CAS  Google Scholar 

  15. K. Kameda, J. Japan Inst. Metals 45, 614 (1981).

    CAS  Google Scholar 

  16. G. Qi, Mater. Trans. JIM 30, 75 (1989).

    Google Scholar 

  17. M. Bienzle and F. Sommer, Z. Metallkd. 85, 766 (1994).

    CAS  Google Scholar 

  18. T.M. Kornenhen and J.K. Kivilahti, J. Electron. Mater. 27, 149 (1998).

    Google Scholar 

  19. J.A.V. Butler, Proc. Roy. Soc. 135A, 348 (1932).

    Article  Google Scholar 

  20. H. Enoki, K. Ishida, and T. Nishizawa, J. Less-Common Met. 160, 153 (1990).

    Article  CAS  Google Scholar 

  21. S. Sugden, J. Chem. Soc. 124, 27 (1924).

    Google Scholar 

  22. F. Bashforth and J.C. Adams, An Attempt to Test the Theory of Capillary Action, Cambridge, U.K.: Cambridge Univ. Press, 1883).

    Google Scholar 

  23. O. Redlich and A.T. Kister, Ind. Eng. Chem. 24, 345 (1948).

    Article  Google Scholar 

  24. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  25. T. Tanaka, K. Hack, T. Iida, and S. Hara, Z. Metallkd. 87, 380 (1996).

    CAS  Google Scholar 

  26. B. Sundaman, B. Jansson, and J.O. Andersson, CALPHAD 9, 153 (1985).

    Article  Google Scholar 

  27. W. Huma-Rothery, Phil. Trans. Royal Soc. London, Ser. A 233, 1 (1936).

    Article  Google Scholar 

  28. E.A. Owen, Phil. Mag. 27, 294 (1939).

    CAS  Google Scholar 

  29. M.E. Staumanis, Trans. Metall. Soc. London AIME 233, 964 (1956).

    Google Scholar 

  30. E.E. Libman, Bull. Ill. Univ. Eng. Exp. Sta. 187 (1928).

  31. W.D. Kingery and M. Humenik, J. Phys. Chem. 57, 358 (1953).

    Article  Google Scholar 

  32. I. Lauerman, G. Metzger, and F. Sauerwald, Z. Phys. Chem. Bol 216, 1 (1960).

    Google Scholar 

  33. S.K. Rhee, J. Am. Ceram. Soc. 53, 639 (1970).

    Article  CAS  Google Scholar 

  34. G. Bernard and C.H.P. Lupis, Metall. Trans. 2, 555 (1971).

    CAS  Google Scholar 

  35. A. Kasama, T. Iida, and Z. Morita, J. Jpn. Inst. Met. 40, 1030 (1976).

    CAS  Google Scholar 

  36. M. Brunet, J.C. Joud, N. Eustathopoulos, and P. Derse, J. Less Common Met. 51, 59 (1977).

    Article  Google Scholar 

  37. R. Sengiorgi, M.L. Muolo, and A. Passerone, Acta Metall. 30, 1597 (1982).

    Article  Google Scholar 

  38. K. Nogi, K. Oishi, and K. Ogino, Mater. Trans. JIM 30, 137 (1989).

    Google Scholar 

  39. I. Egry, G. Lohófer, and S. Schneider, Paper presented at the 10th Int. IUPAC Conf. High Temperature Materials Chemistry (Julich, Germany, 10–14 April 2000), p. 87.

  40. D.A. Melford and T.P. Hoar, J. Inst. Met. 85, 197 (1956–57).

    Google Scholar 

  41. S.P. Yatsenko, W.I. Kononenko, and A.L. Schukman, Teplofiz. Vys. Temp. 10, 66 (1972).

    CAS  Google Scholar 

  42. G. Lang, J. Inst. Met. 101, 300 (1973).

    CAS  Google Scholar 

  43. G. Lang, P. Laty, J.C. Joud, and P. Desre, Z. Metallkd. 68, 133 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, Z., Gasior, W., Pstrus, J. et al. Studies of the Ag-In phase diagram and surface tension measurements. J. Electron. Mater. 30, 1120–1128 (2001). https://doi.org/10.1007/s11664-001-0138-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0138-4

Key words

Navigation