Skip to main content
Log in

A Comparative Study of MARS, GEP, and GMDH Methods for Modeling Soil Thermal Conductivity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study used three well-known white-box data-driven models, including multivariate adaptive regression splines (MARS), gene expression programming (GEP), and group method of data handling (GMDH), for generating explicit formulas for the prediction of thermal conductivity of the soil \((\lambda )\). Therefore, 40 soil samples and three input variables, such as moisture content \((\omega )\), porosity \((n)\), and the natural density of soil \((\rho )\), were used to predict \(\lambda \). The performance of the proposed formulas was assessed via statistical indicators such as the determination of coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Statistical criteria have shown that all proposed models provided almost identical results. However, the MARS model was marginally more accurate than the GEP and GMDH models. In addition, the error measures of MARS with RMSE = 0.021, MAE = 0.018, and MAPE = 1.191% were slightly more accurate than GA-ANN (RMSE = 0.030, MAE = 0.025, and MAPE = 1.750%) that reported in the previous study for estimation of \(\lambda \). However, the prominent feature of the suggested white-box data-driven models compared to black-box models such as ANN is to provide explicit equations for estimating \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data references are described in the text of the article.

References

  1. B. Tong, Z. Gao, R. Horton, Y. Li, L. Wang, J. Hydrometeorol. (2016). https://doi.org/10.1175/JHM-D-15-0119.1

    Article  Google Scholar 

  2. G. Bovesecchi, P. Coppa, Int. J. Thermophys. (2013). https://doi.org/10.1007/s10765-013-1503-2

    Article  Google Scholar 

  3. N.H. Abu-Hamdeh, Soil Till. Res. (2000). https://doi.org/10.1016/S0167-1987(00)00129-X

    Article  Google Scholar 

  4. T. Nikiforova, M. Savytskyi, K. Limam, W. Bosschaerts, R. Belarbi, Energy Procedia. (2013). https://doi.org/10.1016/j.egypro.2013.12.034

    Article  Google Scholar 

  5. B.S. Ghuman, R. Lal, Soil Sci. (1985). https://doi.org/10.1097/00010694-198501000-00011

    Article  Google Scholar 

  6. N.H. Abu-Hamdeh, A.I. Khdair, R.C. Reeder, Int. J. Heat Mass Transf. (2001). https://doi.org/10.1016/S0017-9310(00)00144-7

    Article  Google Scholar 

  7. Y. Du, R. Li, L. Zhao, C. Yang, T. Wu, G. Hu, Y. Xiao, X. Zhu, S. Yang, J. Ni, J. Ma, CATENA (2020). https://doi.org/10.1016/j.catena.2020.104608

    Article  Google Scholar 

  8. M. Torabi, H. Sarkardeh, S.M. Mirhosseini, Water Supply. (2022). https://doi.org/10.2166/ws.2022.248

    Article  Google Scholar 

  9. G. Al. Nakshabandi, H. Kohnke, Agric. Meteorol. (1965). https://doi.org/10.1016/0002-1571(65)90013-0

    Article  Google Scholar 

  10. I.N. Hamdhan, B.G. Clarke, April. Determination of thermal conductivity of coarse and fine sand soils. In Proceedings of World Geothermal Congress (pp. 1–7) (2010)

  11. G. Karimi, Y. Moradi, Analog Integr Circ Sig Process. (2019). https://doi.org/10.1007/s10470-018-1318-y

    Article  Google Scholar 

  12. V. Balland, P.A. Arp, J. Environ. Eng. Sci. (2005). https://doi.org/10.1139/s05-007

    Article  Google Scholar 

  13. S. Lu, T.S. Ren, Y.S. Gong, R. Horton, Soil. Sci. Soc. Amer. J. (2007). https://doi.org/10.2136/sssaj2006.0041

    Article  Google Scholar 

  14. S.K. Haigh, Geotechnique (2012). https://doi.org/10.1680/geot.11.P.043

    Article  Google Scholar 

  15. R. Li, L. Zhao, T. Wu, Q. Wang, Y. Ding, J. Yao, X. Wu, G. Hu, Y. Xiao, Y. Du, X. Zhu, Agric. For. Meteorol. (2019). https://doi.org/10.1016/j.agrformet.2018.10.011

    Article  Google Scholar 

  16. H. He, M. Dyck, J. Lv, J. Hydrol. (2020). https://doi.org/10.1016/j.jhydrol.2020.125167

    Article  Google Scholar 

  17. K. Malek, F. Khanmohammadi, Int. Commun. Heat Mass Transf. (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105516

    Article  Google Scholar 

  18. E.R. Ibrahim, M.S. Jouini, F. Bouchaala, J. Gomes, ACS Omega (2021). https://doi.org/10.1021/acsomega.1c04429

    Article  Google Scholar 

  19. Z.H. Rizvi, S.J. Akhtar, W.T. Sabeeh, F, Wuttke. In E3S Web of Conferences. (2020) https://doi.org/10.1051/e3sconf/202020504006

  20. M.E. Orakoglu Firat, O. Atila, J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-021-11081-x

  21. N. Kardani, A. Bardhan, P. Samui, M. Nazem, P.G. Asteris, A. Zhou, Int J Therm Sci. (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107427

    Article  Google Scholar 

  22. N. Kardani, A. Bardhan, P. Samui, M. Nazem, A. Zhou, D.J. Armaghani, Eng Comput. (2022). https://doi.org/10.1007/s00366-021-01329-3

    Article  Google Scholar 

  23. F.Q. Cui, W. Zhang, Z.Y. Liu, W. Wang, J.B. Chen, L. Jin, H. Peng, Adv. Civ. Eng. (2020). https://doi.org/10.1155/2020/8898126

    Article  Google Scholar 

  24. T. Zhang, C.J. Wang, S.Y. Liu, N. Zhang, T.W. Zhang, Cold Reg. Sci. Technol. (2020). https://doi.org/10.1016/j.coldregions.2019.102907

    Article  Google Scholar 

  25. S.M. Bateni, D.S. Jeng, S.M. Naeini, Eng Appl Artif Intell. (2012). https://doi.org/10.1016/j.engappai.2012.02.017

    Article  Google Scholar 

  26. K.Q. Li, Q. Kang, J.Y. Nie, X.W. Huang, Geothermics (2022). https://doi.org/10.1016/j.geothermics.2022.102416

    Article  Google Scholar 

  27. C. Wang, G. Cai, X. Liu, M. Wu, Heat Mass Transf. (2022). https://doi.org/10.1007/s00231-022-03209-y

    Article  Google Scholar 

  28. C. Liu, X. Hu, R. Yao, Y. Han, Y. Wang, W. He, L. Du, Adv. Civ. Eng. (2020). https://doi.org/10.1155/2020/6631666

    Article  Google Scholar 

  29. N. Nabipour, M. Dehghani, A. Mosavi, S. Shamshirband, IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2964584

    Article  Google Scholar 

  30. M. Samadi, H. Sarkardeh, E. Jabbari, Soft Comput. (2021). https://doi.org/10.1007/s00500-020-05413-6

    Article  Google Scholar 

  31. A. Molajou, V. Nourani, A. Afshar, M. Khosravi, A. Brysiewicz, Water Resour. Manag. (2021). https://doi.org/10.1007/s11269-021-02818-2

    Article  Google Scholar 

  32. J.A. Lazzús, Int. J. Thermophys. (2011). https://doi.org/10.1007/s10765-011-0956-4

    Article  Google Scholar 

  33. R. Shafag Lhoron, M. Samadi, A. Shamsai, Water Supply (2022). https://doi.org/10.2166/ws.2022.421

    Article  Google Scholar 

  34. M. Samadi, H. Sarkardeh, E. Jabbari, Stoch. Environ. Res. Risk Assess. (2020). https://doi.org/10.1007/s00477-020-01794-0

    Article  Google Scholar 

  35. M. Samadi, E. Jabbari, H.M. Azamathulla, M. Mojallal, Eng. Appl. Comput. Fluid Mech. (2015). https://doi.org/10.1080/19942060.2015.1011826

    Article  Google Scholar 

  36. J.H. Friedman, Ann Stat. (1991). https://doi.org/10.1214/aos/1176347963

    Article  Google Scholar 

  37. M. Samadi, M.H. Afshar, E. Jabbari, H. Sarkardeh, IJST-T CIV Eng. (2020). https://doi.org/10.1007/s40996-020-00364-2

    Article  Google Scholar 

  38. C, Ferreira. (2001). https://doi.org/10.1007/978-1-4471-0123-9_54

  39. A.G. Ivakhnenko, IEEE Trans. Cybern. (1971). https://doi.org/10.1109/TSMC.1971.4308320

    Article  Google Scholar 

  40. A. Guven, A. Pala, Water Supply. (2022). https://doi.org/10.2166/ws.2021.372

    Article  Google Scholar 

  41. S.S. Band, A. Mohammadzadeh, P. Csiba, A. Mosavi, A.R. Varkonyi-Koczy, IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.3037134

    Article  Google Scholar 

  42. R. Tariq, Y. Hussain, N.A. Sheikh, K. Afaq, H.M. Ali, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-2619-9

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the University of Sumatera Utara.

Funding

This study did not receive funding from any sources.

Author information

Authors and Affiliations

Authors

Contributions

SISA-H: supervision, conceptualization, methodology, original draft; IM: writing—review and editing; BTS: formal analysis, investigation, methodology; MNF: visualization, resources, writing—review and editing; AKK: validation, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sulieman Ibraheem Shelash Al-Hawary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hawary, S.I.S., Muda, I., Sayed, B.T. et al. A Comparative Study of MARS, GEP, and GMDH Methods for Modeling Soil Thermal Conductivity. Int J Thermophys 44, 115 (2023). https://doi.org/10.1007/s10765-023-03215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03215-0

Keywords

Navigation