Skip to main content

Advertisement

Log in

On the Multiscale Formulation and the Derivation of Phase-Change Moving Interfaces

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A closed-form analytical solution for transient solidification of multicomponent alloys is proposed by analytically solving the microscale solidification to feed the local conditions, such as surface energy, surface tension, nucleation radius, interface temperature, and solute concentration, necessary to the evolution of macroscopic solidus, liquidus, and eutectic interfaces. Expressions for the critical radius, total free energy, and nucleation rate are derived for homogeneous and heterogeneous nucleation based on recent propositions for nucleation and surface energy. A general solution for interface evolution is proposed, encompassing local temperature and concentration conditions to provide the proper integration of the macroscopic temperature necessary for latent heat release in the solid–liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Garcia, Solidificação: Fundamentos e Aplicações, 2nd edn. (University of Campinas Publishing House, Campinas, 2007), pp.117–199

    Google Scholar 

  2. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959), pp.282–296

    Google Scholar 

  3. A. Mori, K. Akari, Methods of analysis of the moving boundary-surface problem. Int. J. Chem. Eng. 16, 734 (1976)

    Google Scholar 

  4. M.N. Ozisik, Finite Difference Methods in Heat Transfer, 1st edn. (CRC Press, Boca Raton, 1994), p.417

    MATH  Google Scholar 

  5. R.M. Furzeland, A survey of the formulation and solution of free and moving boundary (Stefan) problems, Brunel University Math. Report (1977)

  6. A. Garcia, M. Prates, Metall. Trans. B (1978). https://doi.org/10.1007/BF02654420

    Article  Google Scholar 

  7. A. Garcia, T.W. Clyne, M. Prates, Metall. Trans. B (1979). https://doi.org/10.1007/BF02653977

    Article  Google Scholar 

  8. J. Lipton, A. Garcia, W. Heinemann, Arch. Eisenhüttenw. (1982). https://doi.org/10.1002/srin.198205182

    Article  Google Scholar 

  9. D. Bouchard, J.S. Kirkaldy, Metall. Mater. Trans. A (1997). https://doi.org/10.1007/s11663-997-0039-x

    Article  Google Scholar 

  10. M. Rappaz, W.J. Boettinger, Acta Mater. (1999). https://doi.org/10.1016/S1359-6454(99)00188-3

    Article  Google Scholar 

  11. J.M.V. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. (2000). https://doi.org/10.1007/s11661-000-0096-0

    Article  Google Scholar 

  12. M. Rappaz, A. Jacot, W.J. Boettinger, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. (2003). https://doi.org/10.1007/s11661-003-0083-3

    Article  Google Scholar 

  13. V.R. Voller, Trans. Indian Inst. Met. (2009). https://doi.org/10.1007/s12666-009-0042-9

    Article  Google Scholar 

  14. A. Hamasaiid, M.S. Dargusch, T. Loulou, G. Dour, Int. J. Therm. Sci. (2011). https://doi.org/10.1016/j.ijthermalsci.2011.02.016

    Article  Google Scholar 

  15. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Philos. Trans. R. Soc. A (2018). https://doi.org/10.1098/rsta.2017.0217

    Article  Google Scholar 

  16. I.L. Ferreira, A. Garcia, A.L.S. Moreira, Int. J. Math. Math. (2021). https://doi.org/10.1155/2021/6624287

    Article  Google Scholar 

  17. I.L. Ferreira, Int. J. Thermophys. (2022). https://doi.org/10.1007/s10765-021-02956-0

    Article  Google Scholar 

  18. I.L. Ferreira, A. Garcia, A.L.S. Moreira, J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-021-11153-y

    Article  Google Scholar 

  19. J. Crank, in Numerical Methods in Heat Transfer. ed. by R.W. Lewis, K. Morgan, O.C. Zienkiewicsz (Wiley, New York, 1981), p.177

    Google Scholar 

  20. M. El-Bealy, Metall. Mater. Trans. B (2000). https://doi.org/10.1007/s11663-000-0052-9

    Article  Google Scholar 

  21. L. Tan, N. Zabaras, J. Comput. Phys. (2007). https://doi.org/10.1016/j.jcp.2006.06.003

    Article  Google Scholar 

  22. H. Hou, Y. Zhao, X. Niu, Trans. Nonferrous Met. Soc. China (2008). https://doi.org/10.1016/S1003-6326(10)60207-5

    Article  Google Scholar 

  23. M.F. Zhu, T. Dai, S.Y. Lee, C. Hong, Comput. Math. Appl. (2008). https://doi.org/10.1016/j.camwa.2007.08.023

    Article  Google Scholar 

  24. A.A. Ranjbar, A. Ghaderi, P. Dousti, M. Famouri, Int. J. Eng. 23, 273 (2010)

    Google Scholar 

  25. A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler, M. Rettenmayr, Comput. Mater. Sci. (2012). https://doi.org/10.1016/j.commatsci.2011.12.019

    Article  Google Scholar 

  26. J. Li, Z. Wang, Y. Wang, J. Wang, Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2011.11.037

    Article  Google Scholar 

  27. M. Eshraghi, S.D. Felicelli, B. Jelinek, J. Cryst. Growth (2012). https://doi.org/10.1016/j.jcrysgro.2012.06.002

    Article  Google Scholar 

  28. X. Zhang, J. Zhao, H. Jiang, M. Zhu, Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2011.12.045

    Article  Google Scholar 

  29. Y. Shi, Q. Xu, B. Liu, Trans. Nonferrous Met. Soc. China (2012). https://doi.org/10.1016/S1003-6326(11)61529-X

    Article  Google Scholar 

  30. Z. Guo, J. Mi, P.S. Grant, IOP Conf. Ser.: Mater. Sci. Eng. (2012). https://doi.org/10.1088/1757-899X/33/1/012101

    Article  Google Scholar 

  31. B. Jelinek, M. Eshraghi, S. Felicelli, J.F. Peters, Comput. Phys. Commun. (2014). https://doi.org/10.1016/j.cpc.2013.09.013

    Article  Google Scholar 

  32. M. Paliwal, I.H. Jung, J. Cryst. Growth (2014). https://doi.org/10.1016/j.jcrysgro.2014.02.010

    Article  Google Scholar 

  33. M. Zhu, D. Sun, S. Pan, Q. Zhang, D. Raabe, Model. Simul. Mater. Sci. Eng. (2014). https://doi.org/10.1088/0965-0393/22/3/034006

    Article  Google Scholar 

  34. A. Viardin, M. Založnik, Y. Souhar, M. Apel, H. Combeau, Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.10.004

    Article  Google Scholar 

  35. A.M. Jokisaaria, P.W. Voorheesa, J.E. Guyerd, J.A. Warrend, O.G. Heinonen, Comput. Mater. Sci. (2018). https://doi.org/10.1016/j.commatsci.2018.03.015

    Article  Google Scholar 

  36. B. Wu, A.L. Jiang, H. Lu, H.L. Zheng, X.L. Tian, Mater. Sci. Forum. (2018). https://doi.org/10.4028/www.scientific.net/MSF.913.212

    Article  Google Scholar 

  37. C. Gu, C.D. Ridgeway, A.A. Luo, Metall. Mater. Trans. B (2019). https://doi.org/10.1007/s11663-018-1480-8

    Article  Google Scholar 

  38. D. Montes de Oca Zapiain, J.A. Stewart, R. Dingreville, Comput. Mater. Sci. (2021). https://doi.org/10.1038/s41524-020-00471-8

    Article  Google Scholar 

  39. D. Tourret, H. Liu, J. Lorca, Prog. Mater. Sci. (2022). https://doi.org/10.1016/j.pmatsci.2021.100810

    Article  Google Scholar 

  40. K.D. Noubary, M. Kellner, B. Nestler, Materials (2022). https://doi.org/10.3390/ma15031160

    Article  Google Scholar 

  41. V.P. Laxmipathy, F. Wang, M. Selzer, B. Nestler, Metals (2022). https://doi.org/10.3390/met12030376

    Article  Google Scholar 

  42. Y. Le Bouar, A. Finel, B. Appolaire, M. Cottura, Phase field models for modeling microstructures evolution in single crystal Ni-base super alloy, in Nickel Base Single Crystals Across Length Scales. ed. by G. Cailletaud, J. Cormier, G. Eggeler, V. Maurel, L. Nazé (Elsevier, Amsterdam, 2022), pp.379–399

    Chapter  Google Scholar 

  43. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, I.L. Svensson, J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.030

    Article  Google Scholar 

  44. M. Easton, C. Davidson, D. John, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. (2010). https://doi.org/10.1007/s11661-010-0183-9

    Article  Google Scholar 

  45. D.B. Carvalho, E.C. Guimarães, A.L.S. Moreira, D.J. Moutinho, J.M. Dias-Filho, O.L. Rocha, Mater. Res. (2013). https://doi.org/10.1590/S1516-14392013005000072

    Article  Google Scholar 

  46. V.A. Hosseini, S.G. Shabestari, R. Gholizadeh, Mater. Des. (2013). https://doi.org/10.1016/j.matdes.2013.02.088

    Article  Google Scholar 

  47. A.L.S. Moreira, O.F.L. Rocha, J.E. Spinelli, D.L.B. Carvalho, D.J.C. Moutinho, J.M.S. Dias Filho, Mater. Res. (2014). https://doi.org/10.1590/S1516-14392014005000015

    Article  Google Scholar 

  48. J.D. Miller, T.M. Pollock, Acta Mater. (2014). https://doi.org/10.1016/j.actamat.2014.05.040

    Article  Google Scholar 

  49. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  50. A.L.S. Moreira, A.S. Barros, I.A.B. Magno, F.A. Souza, C.A.M. Mota, M.A.P.S. Silva, O.F.L. Rocha, Met. Mater. Int. (2015). https://doi.org/10.1007/s12540-015-4499-2

    Article  Google Scholar 

  51. E. Acer, E. Çadirli, H. Erol, M. Gündüz, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. (2016). https://doi.org/10.1007/s11661-016-3484-9

    Article  Google Scholar 

  52. E. Karaköse, M. Yildiz, M. Keskin, Metall. Mater. Trans. B (2016). https://doi.org/10.1007/s11663-016-0678-x

    Article  Google Scholar 

  53. E. Çadırlı, U. Büyük, S. Engin, H. Kaya, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.010

    Article  Google Scholar 

  54. M. Riestra, E. Ghassemali, T. Bogdanoff, S. Seifeddine, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.07.074

    Article  Google Scholar 

  55. A. Medjahed, A. Henniche, M. Derradji, T. Yu, Y. Wang, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.01.118

    Article  Google Scholar 

  56. Ü. Bayram, N. Maraşlı, Metall. Mater. Trans. B (2018). https://doi.org/10.1007/s11663-018-1404-7

    Article  Google Scholar 

  57. X. Dong, S. Ji, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2022-0

    Article  Google Scholar 

  58. A. Barros, C. Cruz, A. Silva, N. Cheung, A. Garcia, O. Rocha, A. Moreira, Acta Metall. Sin-Engl. (2019). https://doi.org/10.1007/s40195-018-0852-z

    Article  Google Scholar 

  59. A.P. Hekimoglu, M. Çalıs, G. Ayata, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00429-6

    Article  Google Scholar 

  60. T. Gu, B. Chen, C. Tan, J. Feng, Optics (2019). https://doi.org/10.1016/j.optlastec.2018.11.008

    Article  Google Scholar 

  61. Y.Z. Li, N. Mangelinck-Noël, G. Zimmermann, L. Sturz, H. Nguyen-Thi, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155458

    Article  Google Scholar 

  62. S. Birinci, S. Basit, N. Marasli, J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-021-06564-9

    Article  Google Scholar 

  63. H. Li, G. Wang, Z. Qui, Z. Zheng, D. Zeng, Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202200142

    Article  Google Scholar 

  64. I.L. Ferreira, A.L.S. Moreira, Designing Shape of Nucleus and Grain Coalescence during Alloy Solidification in 3d-ICOMAS Conference. Verona (2022)

  65. A. Karma, D. Tourret, Curr. Opin. Solid State (2016). https://doi.org/10.1016/j.cossms.2015.09.001

    Article  Google Scholar 

  66. C.R. Swaminathan, V.R. Voller, Int. J. Mass Transf. (1997). https://doi.org/10.1016/S0017-9310(96)00329-8

    Article  Google Scholar 

  67. J. Ni, C. Beckermann, Metall. Trans. B (1991). https://doi.org/10.1007/BF02651234

    Article  Google Scholar 

  68. J. Crank, Free and Moving Boundary Problems, 1st edn. (Oxford University Press Inc., New York, 1996), pp.16–17

    Google Scholar 

  69. R. Shuttleworth, Proc. Phys. Soc. A (1950). https://doi.org/10.1088/0370-1298/63/5/302

    Article  Google Scholar 

  70. M.E. Gurtin, A.I. Murdoch, Int. J. Solids Struct. (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  Google Scholar 

  71. P. Müller, A. Saul, F. Leroy, Nanosci. Nanotechnol. (2014). https://doi.org/10.1088/2043-6262/5/1/013002

    Article  Google Scholar 

  72. I.L. Ferreira, Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-021-02903-z

    Article  Google Scholar 

  73. W. Di, L. Dezhi, W. Zhenyong, Comp. Sci. Info. Technol. (2015). https://doi.org/10.5121/csit.2015.51104

    Article  Google Scholar 

  74. A. Jakhar, P. Rath, S.K. Mahapatra, Eng. Sci. Technol. (2016). https://doi.org/10.1016/j.jestch.2016.04.002

    Article  Google Scholar 

  75. I.L. Ferreira, A.L.S. Moreira, J. Aviz, T.A. Costa, O.F.L. Rocha, A.S. Barros, A. Garcia, J. Manuf. Proc. (2018). https://doi.org/10.1016/j.jmapro.2018.08.010

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support provided by FAPERJ (The Scientific Research Foundation of the State of Rio de Janeiro—Brazil) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil—Finance Code 001) and CNPq—Brazil (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Contributions

ILF developed the formalism, derived equations proposed, performed computations, and wrote the text. ALSM wrote the Introduction section, performed the literature review, and improved the text. AG helped with the comparison with his model and proposed improvements in the English text and the figures layouts.

Corresponding author

Correspondence to I. L. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.L., Garcia, A. & Moreira, A.L.S. On the Multiscale Formulation and the Derivation of Phase-Change Moving Interfaces. Int J Thermophys 44, 2 (2023). https://doi.org/10.1007/s10765-022-03099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03099-6

Keywords

Navigation