Skip to main content

Advertisement

Log in

Thermodynamic Properties of Liquid Toluene from Speed-of-Sound Measurements at Temperatures from 283.15 K to 473.15 K and at Pressures up to 390 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report the speeds of sound in liquid toluene (methylbenzene) measured using double-path pulse-echo apparatus independently at The University of Western Australia (UWA) and Imperial College London (ICL). The UWA data were measured at temperatures between (306 and 423) K and at pressures up to 65 MPa with standard uncertainties of between (0.02 and 0.04)%. At ICL, measurements were made at temperatures between (283.15 and 473.15) K and at pressures up to 390 MPa with standard uncertainty of 0.06%. By means of thermodynamic integration, the measured sound-speed data were combined with initial density and isobaric heat capacity values obtained from extrapolated experimental data to derive a comprehensive set of thermodynamic properties of liquid toluene over the full measurement range. Extensive uncertainty analysis was performed by studying the response of derived properties to constant and dynamic perturbations of the sound-speed surface, as well as the initial density and heat capacity values. The relative expanded uncertainties at 95% confidence of derived density, isobaric heat capacity, isobaric expansivity, isochoric heat capacity, isothermal compressibility, isentropic compressibility, thermal pressure coefficient and internal pressure were estimated to be (0.2, 2.2, 1.0, 2.6, 0.6, 0.2, 1.0 and 2.7)%, respectively. Due to their low uncertainty, these data and derived properties should be well suited for developing a new and improved fundamental Helmholtz equation of state for toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Assael et al., Reference correlation of the thermal conductivity of toluene from the triple point to 1000 K and up to 1000 MPa. J. Phys. Chem. Ref. Data 41(2), 023101–023101 (2012)

    Article  ADS  Google Scholar 

  2. H. Ziebland, The thermal conductivity of toluene. New determinations and an appraisal of recent experimental work. Int. J. Heat Mass Transf. 2(4), 273–279 (1961)

    Article  Google Scholar 

  3. D. Sommer et al., Measurement and correlation of the (p, ρ, T) relation of liquid cyclohexane, toluene, and ethanol in the temperature range from 23315 K to 47315 K at pressures up to 30 MPa for use as density reference liquids. J. Chem. Thermodyn. 43(2), 117–132 (2011)

    Article  Google Scholar 

  4. E.W. Lemmon, R. Span, Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51(3), 785–850 (2006)

    Article  Google Scholar 

  5. E.B. Freyer, J.C. Hubbard, D.H. Andrews, Sonic studies of the physical properties of liquids. I. The sonic interferometer. The velocity of sound in some organic liquids and their compressibilities1. J. Am. Chem. Soc. 51(3), 759–770 (1929)

    Article  Google Scholar 

  6. D.D. Deshpande, L.G. Bhatgadde, Sound velocities, adiabatic compressibilities, and free volumes in aniline solutions. J. Phys. Chem. 72(1), 261–266 (1968)

    Article  Google Scholar 

  7. V.V. Zotov, Y.A. Neruchev, N.F. Otpushchennikov, Measurement of the velocity of sound in toluene at the saturation line. Sov. Phys. J. 12(2), 252–253 (1969)

    Article  Google Scholar 

  8. S. Reddy, Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K. J. Chem. Eng. Data 31(2), 238–240 (1986)

    Article  Google Scholar 

  9. K. Tamura, S. Murakami, S. Doi, Speeds of sound, densities, and isentropic compressibilities of {xc-C6H12+ (1 − x) C6H5CH3},{xc-C6H11CH3+ (1 − x) C6H6}, and {xc-C6H11CH3+ (1− x) C6H5CH3}, from 293.15 to 303.15 K. J. Chem. Thermodyn. 17(4), 325–333 (1985)

    Article  Google Scholar 

  10. R. Gonzalez-Olmos et al., Influence of temperature on thermodynamic properties of methyl t-butyl ether (MTBE) + gasoline additives. Int. J. Thermophys. 28(4), 1199–1227 (2007)

    Article  ADS  Google Scholar 

  11. D.J. Luning Prak et al., Viscosity, speed of sound, bulk modulus, surface tension, and flash point of binary mixtures of n-hexadecane + ethyl benzene or + toluene at (293.15 to 373.15) K and 0.1 MPa. J. Chem. Eng. Data 59(11), 3571–3585 (2014)

    Article  Google Scholar 

  12. D. Dragoescu, F. Sirbu, A. Shchamialiou, Thermodynamic properties for binary mixtures of 1-chlorohexane + some hydrocarbons at different temperatures and atmospheric pressure. J. Mol. Liq. 294, 111510 (2019)

    Article  Google Scholar 

  13. T. Takagi, H. Teranishi, Ultrasonic speeds and thermodynamics for (toluene+ o-xylene) and (toluene+ aniline) under high pressures. J. Chem. Thermodyn. 17(11), 1057–1062 (1985)

    Article  Google Scholar 

  14. M.J.P. Muringer, N.J. Trappeniers, S.N. Biswas, The effect of pressure on the sound velocity and density of toluene and n-heptane up to 2600 bar. Phys. Chem. Liq. 14(4), 273–296 (1985)

    Article  Google Scholar 

  15. V.S. Okhotin et al., Sound velocity in liquid toluene. Teplofiz. Svoistva Veshchestv Mater. 24, 5–13 (1988)

    Google Scholar 

  16. V.N. Verveiko, G.A. Melnikov, Y.F. Melikhov, Accoustic and P-V-T study of halogenated benzenes and toluenes in a wide range of temperatures and pressures (to 600 MPa). Teplofiz. Svoystva Veshchestv Mater. 30, 5–16 (1991)

    Google Scholar 

  17. K. Meier, S. Kabelac, Measurements of the Speed of Sound in Liquid Toluene. J. Chem. Eng. Data 58(5), 1398–1406 (2013)

    Article  Google Scholar 

  18. F. Yebra, J. Troncoso, L. Romaní, Fully automatized apparatus for determining speed of sound for liquids in the temperature and pressure interval (283.15–343.15) K and (0.1–95) MPa. J. Chem. Thermodyn. 104, 102–109 (2017)

    Article  Google Scholar 

  19. A.P. Shchamialiou et al., Densities, speed of sound, and derived thermodynamic properties of toluene, tetradecane, and 1-chlorohexane in the compressed liquid region. Fluid Phase Equilib. 507, 112427 (2020)

    Article  Google Scholar 

  20. S.Z.S. Al Ghafri et al., Speed of sound and derived thermodynamic properties of para-xylene at temperatures between (306 and 448) K and at pressures up to 66 MPa. J. Chem. Thermodyn. 135, 369–381 (2019)

    Article  Google Scholar 

  21. W.J. Tay, J.P.M. Trusler, Density, sound speed and derived thermophysical properties of n-nonane at temperatures between (283.15 and 473.15) K and at pressures up to 390 MPa. J. Chem. Thermodyn. 124, 107–122 (2018)

    Article  Google Scholar 

  22. A. Polt, B. Platzer, G. Maurer, Parameter der thermischen Zustandsgleichung von Bender fuer 14 mehratomige reine Stoffe. Chem. Tech. (Leipzig) 44(6), 216–224 (1992)

    Google Scholar 

  23. R.D. Goodwin, Toluene thermophysical properties from 178 to 800 K at pressures to 1000 bar. J. Phys. Chem. Ref. Data 18(4), 1565–1636 (1989)

    Article  ADS  Google Scholar 

  24. M. Trusler, Physical Acoustics and Metrology of Fluids (CRC Press, Boca Raton, 1991)

    Google Scholar 

  25. M.O. McLinden, J.D. Splett, A liquid density standard over wide ranges of temperature and pressure based on toluene. J. Res. Natl Inst. Stand. Technol. 113, 29–67 (2008)

    Article  Google Scholar 

  26. T.S.E. Akhundov, R.A. Mustafaev, Experimental determination of the isobaric specific heat of toluene in supercritical and vapor regions. Izv. Vyssh. Uchebn. Zaved., Neft Gaz. 16(3), 68 (1973)

    Google Scholar 

  27. R.D. Chirico, W.V. Steele, Reconciliation of calorimetrically and spectroscopically derived thermodynamic properties at pressures greater than 0.1 MPa for benzene and methylbenzene: the importance of the third virial coefficient. Ind. Eng. Chem. Res. 33(1), 157–167 (1994)

    Article  Google Scholar 

  28. C.A. Cerdeiriña et al., temperature dependence of the excess molar heat capacities for alcohol−alkane mixtures. Experimental testing of the predictions from a two-state model. J. Phys. Chem. B 106(1), 185–191 (2002)

    Article  Google Scholar 

  29. M.J. Pedersen, W.B. Kay, H.C. Hershey, Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene. J. Chem. Thermodyn. 7(12), 1107–1118 (1975)

    Article  Google Scholar 

  30. M.J. Dávila, J.P. Martin-Trusler, Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa. J. Chem. Thermodyn. 41(1), 35–45 (2009)

    Article  Google Scholar 

  31. J.P.M. Trusler, E.W. Lemmon, Determination of the thermodynamic properties of water from the speed of sound. J. Chem. Thermodyn. 109, 61–70 (2017)

    Article  Google Scholar 

  32. K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves, vol. 7 (Academic Press, New York, 2013)

    Google Scholar 

  33. L. Morávková, Z. Wagner, J. Linek, (P, Vm, T) Measurements of (toluene+ propiophenone) at temperatures from 298.15 K to 328.15 K and at pressures up to 40 MPa. J. Chem. Thermodyn. 37(7), 658–666 (2005)

    Article  Google Scholar 

  34. H. Kashiwagi et al., Thermal conductivity and density of toluene in the temperature range 273–373 K at pressures up to 250 MPa. Int. J. Thermophys. 3(3), 201–215 (1982)

    Article  ADS  Google Scholar 

  35. J.H. Dymond et al., Transport properties of nonelectrolyte liquid mixtures VIII Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100°C at pressures up to 500 MPa. Int. J. Thermophys. 12, 275–287 (1991)

    Article  ADS  Google Scholar 

  36. V.M. Shulga et al., Thermal conductivity and heat capacity of liquid toluene at temperatures between 255 and 400 K and at pressures up to 1000 MPa. Int. J. Thermophys. 7(6), 1147–1161 (1986)

    Article  ADS  Google Scholar 

  37. J.J. Segovia et al., High-pressure isobaric heat capacities using a new flow calorimeter. J. Supercrit. Fluids 46(3), 258–264 (2008)

    Article  Google Scholar 

  38. M. Chorazewski, J.-P.E. Grolier, S.L. Randzio, Isobaric thermal expansivities of toluene measured by scanning transitiometry at temperatures from (243 to 423) K and pressures up to 200 MPa. J. Chem. Eng. Data 55(12), 5489–5496 (2010)

    Article  Google Scholar 

  39. P. Navia, J. Troncoso, L. Romaní, New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure. J. Chem. Thermodyn. 40(11), 1607–1611 (2008)

    Article  Google Scholar 

  40. T.F. Sun et al., Evaluation of the thermophysical properties of toluene and n-heptane from 180 to 320 K and up to 260 MPa from speed-of-sound data. Ber. Bunsenges. Phys. Chem. 95(6), 696–704 (1991)

    Article  Google Scholar 

  41. A.J. Easteal, L.A. Woolf, p, V, T and derived thermodynamic data for toluene, trichloromethane, dichloromethane, acetonitrile, aniline, and n-dodecane. Int. J. Thermophys. 6(4), 331–351 (1985)

    Article  ADS  Google Scholar 

Download references

Funding

This work was funded by the Australian Research Council through DP190103538. The authors thank Jonathan Choong for assistance developing parts of the analysis code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. Martin Trusler or Paul L. Stanwix.

Ethics declarations

Conflict of interest

There are no relevant financial or non-financial conflicts of interest or competing interests to report.

Data Availability

N/A.

Code availability

N/A.

Ethical Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakal, S., Tay, W.J., Al Ghafri, S.Z.S. et al. Thermodynamic Properties of Liquid Toluene from Speed-of-Sound Measurements at Temperatures from 283.15 K to 473.15 K and at Pressures up to 390 MPa. Int J Thermophys 42, 169 (2021). https://doi.org/10.1007/s10765-021-02917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02917-7

Keywords

Navigation