Skip to main content
Log in

Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry

Part I: Multiple Experiments

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An improved experimental setup and data evaluation procedure are presented for a Loschmidt cell combined with interferometry to measure concentration-dependent binary diffusion coefficients. We overcome long-standing discrepancies about the concentration dependence found in the literature. The systematic analysis of the residuals from parameter estimation enabled the improvement of the experimental setup and the identification of relevant fitting parameters. In particular, we found that it is crucial to account for uncertainties (1) in the initial conditions, (2) in the thermal stability of the optical setup, and (3) in camera calibration. The improved experimental setup and data evaluation procedure are validated with diffusion measurements of the system helium–krypton. The concentration dependence of the diffusion coefficient is successfully determined from multiple experiments with gas mixtures of various initial compositions in the half-cells of the Loschmidt cell. The agreement with literature data and the excellent quality of fit allow for high confidence in the results. In Part II of this paper (Wolff et al., in Int J Thermophys, 2018, https://doi.org/10.1007/s10765-018-2451-7), the improved measurement setup is combined with a refined diffusion model to determine concentration-dependent diffusion coefficients from single measurements of mixing pure gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.G. Economou, J.C. de Hemptinne, R. Dohrn, E. Hendriks, K. Keskinen, O. Baudouin, Chem. Eng. Res. Des. 92, 2795 (2014). https://doi.org/10.1016/j.cherd.2014.10.022

    Article  Google Scholar 

  2. E.L. Cussler, Diffusion—Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  3. Diffusion in Minerals and Melts (2010). https://pubs.geoscienceworld.org/rimg/issue/72/1. Accessed 19 July 2018

  4. J. Amalberti, X. Antoine, P. Burnard, Math. Geosci. 50, 417 (2018). https://doi.org/10.1007/s11004-018-9732-3

    Article  MathSciNet  Google Scholar 

  5. Z.A. Makrodimitri, A. Heller, T.M. Koller, M.H. Rausch, M.S.H. Fleys, A.R. Bos, G.P. van der Laan, A.P. Fröba, I.G. Economou, J. Chem. Thermodyn. 91, 101 (2015). https://doi.org/10.1016/j.jct.2015.07.026

    Article  Google Scholar 

  6. O.A. Moultos, I.N. Tsimpanogiannis, A.Z. Panagiotopoulos, J.P.M. Trusler, I.G. Economou, J. Phys. Chem. B 120, 12890 (2016). https://doi.org/10.1021/acs.jpcb.6b04651

    Article  Google Scholar 

  7. B. Jäger, E. Bich, J. Chem. Phys. 146, 214302 (2017). https://doi.org/10.1063/1.4984100

    Article  ADS  Google Scholar 

  8. F. Sharipov, V.J. Benites, J. Chem. Phys. 147, 224302 (2017). https://doi.org/10.1063/1.5001711

    Article  ADS  Google Scholar 

  9. A. Heller, C. Giraudet, Z.A. Makrodimitri, M.S.H. Fleys, J. Chen, G.P. van der Laan, I.G. Economou, M.H. Rausch, A.P. Fröba, J. Phys. Chem. B (2016). https://doi.org/10.1021/acs.jpcb.6b08117

    Article  Google Scholar 

  10. T.M. Koller, A. Heller, M.H. Rausch, P. Wasserscheid, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 119, 8583 (2015). https://doi.org/10.1021/acs.jpcb.5b02659

    Article  Google Scholar 

  11. A. Heller, T.M. Koller, M.H. Rausch, M.S.H. Fleys, A.N.R. Bos, G.P. van der Laan, Z.A. Makrodimitri, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 118, 3981 (2014). https://doi.org/10.1021/jp500300y

    Article  Google Scholar 

  12. T. Kugler, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3169 (2015). https://doi.org/10.1007/s10765-015-1981-5

    Article  ADS  Google Scholar 

  13. F. Yue, P. Fu, Y. Liu, K. Bie, H. Zhou, Optik 156, 825 (2018). https://doi.org/10.1016/j.ijleo.2017.12.069

    Article  ADS  Google Scholar 

  14. J. Castañer, C.A. Ramírez, Chem. Eng. Commun. 205, 1167 (2018). https://doi.org/10.1080/00986445.2018.1437033

    Article  Google Scholar 

  15. J.L. Medina, C.A. Ramírez, Chem. Eng. Commun. 203, 1625 (2016). https://doi.org/10.1080/00986445.2016.1223059

    Article  Google Scholar 

  16. A. Kalyakin, A. Volkov, A. Vylkov, E. Gorbova, D. Medvedev, A. Demin, P. Tsiakaras, J. Electroanal. Chem. 808, 133 (2018). https://doi.org/10.1016/j.jelechem.2017.12.001

    Article  Google Scholar 

  17. C. Liu, W.S. McGivern, J.A. Manion, H. Wang, J. Phys. Chem. A 120, 8065 (2016). https://doi.org/10.1021/acs.jpca.6b08261

    Article  Google Scholar 

  18. J. Amalberti, P. Burnard, L. Tissandier, D. Laporte, Chem. Geol. 480, 35 (2018). https://doi.org/10.1016/j.chemgeo.2017.05.017

    Article  ADS  Google Scholar 

  19. P.S. Arora, P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 54, 117 (1978). https://doi.org/10.1016/0009-2614(78)85678-4

    Article  ADS  Google Scholar 

  20. G.R. Staker, P.J. Dunlop, K.R. Harris, T.N. Bell, Chem. Phys. Lett. 32, 561 (1975). https://doi.org/10.1016/0009-2614(75)85240-7

    Article  ADS  Google Scholar 

  21. G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Faraday Trans. 1, 825 (1974). https://doi.org/10.1039/F19747000825

    Article  Google Scholar 

  22. R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968). https://doi.org/10.1016/0031-8914(68)90059-1

    Article  ADS  Google Scholar 

  23. L.A. Woolf, R. Mills, D.G. Leaist, C. Erkey, A. Akgerman, A.J. Easteal, D.G. Miller, J.G. Albright, S.F.Y. Li, W. Wakeham, Diffusion coefficients, chap. 9, in Measurement of the Transport Properties of Fluids. Experimental Thermodynamics VIII, ed. by W.A. Wakeham, A. Nagashima, J.V. Sengers (Blackwell Scientific Publications, Oxford, 1991), pp. 228–320

  24. J. Winkelmann, Diffusion in Gases, Liquids and Electrolytes A: Gases in Gases, Liquids and Their Mixtures (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-49718-9_1

    Book  Google Scholar 

  25. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972). https://doi.org/10.1063/1.3253094

    Article  ADS  Google Scholar 

  26. W.E. Stewart, S. Gotoh, J.P. Sørensen, Ind. Eng. Chem. Fund. 12, 114 (1973). https://doi.org/10.1021/i160045a019

    Article  Google Scholar 

  27. S. Gotoh, M. Manner, J.P. Sørensen, W.E. Stewart, Ind. Eng. Chem. Fundam. 12, 119 (1973). https://doi.org/10.1021/i160045a020

    Article  Google Scholar 

  28. C.A. Boyd, N. Stein, V. Steingrimsson, W.F. Rumpel, J. Chem. Phys. 19, 548 (1951). https://doi.org/10.1063/1.1748290

    Article  ADS  Google Scholar 

  29. J. Baranski, Bestimmung binärer diffusionskoeffizienten von gasen mit einer loschmidt-zelle und holografischer interferometrie. Dissertation, Universität Rostock, Rostock (2002)

  30. T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013). https://doi.org/10.1007/s10765-012-1352-4

    Article  ADS  Google Scholar 

  31. D. Buttig, Bestimmung binärer diffusionskoeffizienten in gasmischungen mit einer loschmidt-zelle und holografischer interferometrie. Dissertation, Universitẗ Rostock (2010)

  32. K. Kerl, Über die untersuchung der diffusion binärer gasgemische. Dissertation, Techn. Univ., Braunschweig (1968)

  33. T. Kugler, Determination of gaseous binary diffusion coefficients using a Loschmidt cell combined with holographic interferometry. Dissertation, Universität Erlangen-Nürnberg (2015)

  34. T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3116 (2015). https://doi.org/10.1007/s10765-015-1966-4

    Article  ADS  Google Scholar 

  35. L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.-J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2451-7

  36. D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 105409 (2011). https://doi.org/10.1088/0957-0233/22/10/105409

    Article  ADS  Google Scholar 

  37. D.R. MacQuigg, Appl. Opt. 16, 291 (1977). https://doi.org/10.1364/AO.16.000291

    Article  ADS  Google Scholar 

  38. D.B. Neumann, H.W. Rose, Appl. Opt. 6, 1097 (1967). https://doi.org/10.1364/AO.6.001097

    Article  ADS  Google Scholar 

  39. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975)

    MATH  Google Scholar 

  40. H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Slaman, J. Chem. Phys. 98, 2308 (1993). https://doi.org/10.1063/1.464212

    Article  ADS  Google Scholar 

  41. H. Fujita, J. Phys. Soc. Jpn. 11, 1018 (1956). https://doi.org/10.1143/JPSJ.11.1018

    Article  ADS  Google Scholar 

  42. M. Kullnick, Interferometrische untersuchung der diffusion in binären gemischen realer gase mit einer loschmidt-diffusionsapparatur. Dissertation, Technical University of Braunschweig (2001)

  43. Y. Bard, Nonlinear Parameter Estimation (Academic Press, New York, 1973)

    MATH  Google Scholar 

  44. P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 14, 377 (1972). https://doi.org/10.1016/0009-2614(72)80137-4

    Article  ADS  Google Scholar 

  45. B.N. Srivastava, R. Paul, Physica 28, 646 (1962). https://doi.org/10.1016/0031-8914(62)90120-9

    Article  ADS  Google Scholar 

  46. J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984). https://doi.org/10.1063/1.555703

    Article  ADS  Google Scholar 

  47. W. Hogervorst, Physica 51, 59 (1971). https://doi.org/10.1016/0031-8914(71)90137-6

    Article  ADS  Google Scholar 

  48. G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976). https://doi.org/10.1016/0009-2614(76)80643-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with Grants BA 2884/7-1 and FR 1709/13-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ludger Wolff or André Bardow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, L., Zangi, P., Brands, T. et al. Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry. Int J Thermophys 39, 133 (2018). https://doi.org/10.1007/s10765-018-2450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2450-8

Keywords

Navigation