Skip to main content
Log in

Systematic Study of Mass Transfer in a Loschmidt Cell for Binary Gas Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present paper reports on efforts to explain discrepancies which were found in concentration-dependent binary diffusion coefficient data determined with a Loschmidt cell combined with holographic interferometry using pure gases prior to the diffusion process. While the binary diffusion coefficient data which are determined in the upper half-cell decrease with the mole fraction of the heavier component, those determined in the lower half-cell increase. The reason for such discrepancies, which can also be found in other literature data obtained with interferometric gas analysis methods, is not clear. Therefore, systematic experimental and theoretical investigations on the Loschmidt experiment and the applied evaluation procedure were performed. Furthermore, the influence of different driving forces on the particle flux was examined. Although the reason for the discrepancies between the measurement data determined in each half-cell could not been clarified, various reasons that have been debated in the literature could be excluded. Moreover, experiments using a gas mixture in one of the half-cells suggested that the evaluation procedure is most likely to be the reason for the observed discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(b_{i}\) :

Acceleration of component i due to external forces (\(\text {m}{\cdot }\text {s}^{-2}\))

\(D_{12}\) :

Binary diffusion coefficient (\(\text {m}^{2}{\cdot }\text {s}^{-1}\))

g :

Acceleration due to gravity (\(\text {m}{\cdot }\text {s}^{-2}\))

\(J_{1}\) :

Molar diffusion flux of component 1 (\(\text {mol}{\cdot }\text {m}^{-2}{\cdot }\text {s}^{-1}\))

\(\tilde{J}_1\) :

Total molar flux of component 1 (\(\text {mol}{\cdot }\text {m}^{-2}{\cdot }\text {s}^{-1}\))

\(k_\mathrm{T}\) :

Thermal diffusion ratio

L :

Height of the Loschmidt cell (m)

l :

Depth of the Loschmidt cell (m)

M :

Molar mass (\(\text {kg}{\cdot }\text {mol}^{-1}\))

\(\Delta M\) :

Molar mass difference between components 1 and 2 (\(\text {kg}{\cdot }\text {mol}^{-1}\))

\(M_{\mathrm{i}}\) :

Molar mass of component i (\(\text {kg}{\cdot }\text {mol}^{-1}\))

\(m_{\mathrm{i}}\) :

Molecular mass of component i (kg)

\(n_{1}\) :

Amount of substance 1 (mol)

p :

Pressure (Pa)

\(r_{1}\) :

Source or sink of component 1 (\(\text {mol}{\cdot }\text {s}^{-1}{\cdot }\text {m}^{-3}\))

s :

Width of the Loschmidt cell (m)

T :

Temperature (K)

t :

Time (s)

\(V_\mathrm{l}\) :

Volume of lower half-cell (\(\text {m}^{3}\))

\(V_{\mathrm{u}}\) :

Volume of upper half-cell (\(\text {m}^{3}\))

v :

Molar convective or molar averaged velocity (\(\text {m}{\cdot }\text {s}^{-1}\))

\(x_\mathrm{i}\) :

Mole fraction of component i

z :

Vertical coordinate (m)

\(\rho _1\) :

Partial molar density of component 1 (\(\text {mol}{\cdot }\text {m}^{-3}\))

\(\Delta \rho _1\) :

Partial molar density difference of component 1 between the half-cells (\(\text {mol}{\cdot }\text {m}^{-3}\))

\(\rho _{\mathrm{1,0l}}\) :

Molar density of component 1 prior to diffusion in lower half-cell (\(\text {mol}{\cdot }\text {m}^{-3}\))

\(\rho _{\mathrm{2,0u}}\) :

Molar density of component 2 prior to diffusion in upper half-cell (\(\text {mol}{\cdot }\text {m}^{-3}\))

\(\rho _{\mathrm{mix}}\) :

Molar density of the mixture (\(\text {mol}{\cdot }\text {m}^{-3}\))

\(\rho _{\mathrm{m,i}}\) :

Mass density of component i (\(\text {kg}{\cdot }\text {m}^{-3}\))

\(\rho _{\mathrm{m,mix}}\) :

Mass density of the mixture (\(\text {kg}{\cdot }\text {m}^{-3}\))

\(\tau \) :

Characteristic diffusion time (s)

References

  1. R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968)

    Article  ADS  Google Scholar 

  2. K. Kerl, Dr.-Ing. Thesis, Technical University of Braunschweig, Braunschweig (1968)

  3. P.J. Carson, P.J. Dunlop, T.N. Bell, J. Chem. Phys. 56, 531 (1972)

    Article  ADS  Google Scholar 

  4. G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Farad. T. 1(70), 825 (1974)

    Article  Google Scholar 

  5. G.R. Staker, P.J. Dunlop, K.R. Harris, T.N. Bell, Chem. Phys. Lett. 32, 561 (1975)

    Article  ADS  Google Scholar 

  6. K. Kerl, C. Schwandt, Trends Heat Mass Momentum Transf. 1, 139–151 (1991)

    Google Scholar 

  7. D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 1 (2011)

    Article  Google Scholar 

  8. T. Kugler, B. Jäger, M.H. Rausch, E. Bich, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013)

    Article  ADS  Google Scholar 

  9. K.P. Srivastava, Physica 25, 571 (1959)

    Article  ADS  Google Scholar 

  10. B.N. Srivastava, K.P. Srivastava, J. Chem. Phys. 30, 984 (1959)

    Article  ADS  Google Scholar 

  11. W. Hogervorst, Physica 51, 59 (1971)

    Article  ADS  Google Scholar 

  12. P.S. Arora, H.L. Robjohns, P.J. Dunlop, Physica A 95, 561 (1979)

    Article  ADS  Google Scholar 

  13. M. Kullnick, Dr.-Ing. Thesis, Technical University of Braunschweig, Braunschweig (2001)

  14. K. Kerl, M. Jescheck, Int. J. Heat Mass Transf. 26, 211 (1983)

    Article  MATH  Google Scholar 

  15. E. Bich, R. Hellmann, B. Jäger, to be published (2015)

  16. J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984)

    Article  ADS  Google Scholar 

  17. T. Kugler, M. H. Rausch, A. P. Fröba, Int. J. Thermophys. (2015, submitted)

  18. D. Buttig, personal communication (2014)

  19. C.J. Zwakhals, K.W. Reus, Physica C 100, 231 (1980)

    Article  Google Scholar 

  20. A.P. Malinauskas, M.D. Silverman, J. Chem. Phys. 50, 3263 (1969)

    Article  ADS  Google Scholar 

  21. D. Buttig, Dr.-Ing. Thesis, University of Rostock, Rostock (2010)

  22. L. Waldmann, Handbuch der Physik, Vol. XII: Thermodynamik der Gase (Springer, Berlin, 1958)

    Google Scholar 

  23. M. Jescheck, Dr.-Ing. Thesis, Technical University of Braunschweig, Braunschweig (1979)

  24. S.R.D. Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

    Google Scholar 

  25. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1956)

    MATH  Google Scholar 

  26. C. Schwandt, Diploma Thesis Technical University of Braunschweig, Braunschweig, (1990)

  27. K. Kerl, personal communication (2010/2011)

  28. M.A. Yabsley, P.J. Dunlop, J. Phys. E: Sci. Instrum. 8, 834 (1975)

    Article  ADS  Google Scholar 

  29. I.R. Shankland, P.J. Dunlop, Chem. Phys. Lett. 39, 557 (1976)

    Article  ADS  Google Scholar 

  30. K. Aoyagi, T.N. Bell, P.J. Dunlop, J. Phys. E: Sci. Instrum. 11, 353 (1978)

    Article  ADS  Google Scholar 

  31. S. Ljunggren, Ark- Kem. 24, 1 (1965)

    Google Scholar 

  32. W.E. Stewart, S. Gotoh, J.P. Sorensen, Ind. Eng. Chem. Fundam. 12, 114 (1973)

    Article  Google Scholar 

  33. S. Gotoh, M. Manner, J.P. Sorensen, W.E. Stewart, Ind. Eng. Chem. Fundam. 12, 119 (1973)

    Article  Google Scholar 

  34. J. Loschmidt, Sitzungsbericht Akademie der Wissenschaft Wien 61, 367 (1870)

    Google Scholar 

  35. J. Loschmidt, Sitzungsbericht Akademie der Wissenschaft Wien 62, 468 (1870)

    Google Scholar 

  36. C.A. Boyd, N. Stein, V. Steingrimsson, W.F. Rumpel, J. Chem. Phys. 19, 548 (1951)

    Article  ADS  Google Scholar 

  37. I.R. Shankland, P.J. Dunlop, Physica A 100, 64 (1980)

    Article  ADS  Google Scholar 

  38. P.M. Sigmund, J. Can. Petrol. Technol. 15, 48 (1976)

    Google Scholar 

  39. G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976)

    Article  ADS  Google Scholar 

  40. T. Kugler, Dr.-Ing. Thesis, University of Erlangen-Nuremberg, Erlangen (2015)

Download references

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Initiative for Excellence and via the project “diffusion coefficient” (Grants FR 1709/10-1 and 2 as well as BI 1389/2-1 and 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugler, T., Jäger, B., Bich, E. et al. Systematic Study of Mass Transfer in a Loschmidt Cell for Binary Gas Mixtures. Int J Thermophys 36, 3116–3132 (2015). https://doi.org/10.1007/s10765-015-1966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1966-4

Keywords

Navigation