Skip to main content
Log in

Harmonic Gyrotrons: Pros and Cons

  • Research
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper we present a comprehensive overview of the theoretical and experimental studies on gyrotrons operating at harmonics of the electron cyclotron frequency. Besides the conventional (small-orbit) gyrotrons, three other types of such devices are considered, namely large-orbit gyrotrons (LOG), double-beam gyrotrons, and gyro-devices with a frequency multiplication. Based on a comparison between them and the devices that work on the fundamental resonances, both the advantages and disadvantages of the harmonic gyrotrons are critically examined. Such an analysis is helpful for choosing between different alternative concepts in the design process of appropriate radiation sources for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Thumm, “State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers”. J Infrared Milli Terahz Waves 41, 1–140, (2020). DOI:https://doi.org/10.1007/s10762-019-00631-y.

    Article  Google Scholar 

  2. R. J. Temkin, “Development of terahertz gyrotrons for spectroscopy at MIT”. Terahertz Sci. Technol. , 7 (1), 1–9, (2014) DOI: https://doi.org/10.11906/TST. 001-009. 2014. 03. 01.

    Article  Google Scholar 

  3. N. Kumar, U. Singh, A. Bera, A. K. Sinha, “A review on the sub-THz/THz gyrotrons”. Infrared Physics & Technology, 2016, 76, 38–51, (2016) https://doi.org/10.1016/j.infrared.2016.01.015.

  4. M. Glyavin, S. Sabchevski, T. Idehara, et al. “Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects”. Journal of Infrared Millimeter, and Terahertz Waves. 41, 1022–1037 (2020). DOI:https://doi.org/10.1007/s10762-020-00727-w.

    Article  Google Scholar 

  5. T. Idehara, S. Sabchevski, M. Glyavin, S. Mitsudo. “The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging”. Appl. Sci. , 10 (3), 980, (2020) DOI: https://doi.org/10.3390/app10030980.

    Article  Google Scholar 

  6. S. Sabchevski, M. Glyavin, S. Mitsudo. et al. “Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects”. Journal of Infrared Millimeter, and Terahertz Waves, 42, 715–741 (2021). https://doi.org/10.1007/s10762-021-00804-8.

  7. A. G. Litvak, G. G. Denisov, M. Y. Glyavin. “Russian Gyrotrons: Achievements and Trends”, IEEE Journal of Microwaves, 1 (1) 260-268 (2021). DOI:https://doi.org/10.1109/JMW. 2020. 3030917.

    Article  Google Scholar 

  8. S. Karmakar, J. C. Mudiganti, “Gyrotron: The Most Suitable Millimeter-Wave Source for Heating of Plasma in Tokamak”. In (Ed. ), Plasma Science and Technology. 2021. IntechOpen. https://doi.org/10.5772/intechopen.98857.

  9. S. Sabchevski, M. Glyavin. “Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods”. Photonics. 10(2), 189 (2023). DOI:https://doi.org/10.3390/photonics10020189.

    Article  Google Scholar 

  10. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov. “The induced radiation of excited classical oscillators and its use in high-frequency electronics”. Radiophysics and Quantum Electronics 10.9-10 (1967): 794-813.

    Article  Google Scholar 

  11. V. A. Flyagin, A. V. Gaponov, I. Petelin, and V. K. Yulpatov. “The gyrotron”. IEEE Transactions on Microwave Theory and Techniques, 25(6):514-521, June 1977. DOI: https://doi.org/10.1007/BF01031607.

    Article  Google Scholar 

  12. V. A. Flyagin, G. S. Nusinovich. “Gyrotron oscillators”. Proceedings of the IEEE 76. 6 (1988): 644-656. DOI: 10.1109/5. 4454.

    Article  Google Scholar 

  13. G. S. Nusinovich. Introduction to the Physics of Gyrotrons. The Johns Hopkins University Press, Baltimore, 2004.

    Book  Google Scholar 

  14. R. S. Symons, H. R. Jory. “Cyclotron resonance devices”. Advances in Electronics and electron Physics, 55, 1–75 (1981). Academic Press. https://doi.org/10.1016/S0065-2539(08)60176-6.

  15. H. R. Jory, “U. S. Army Electronics Command Research and Development Technical Report”, ECOM-01873-F (1968).

  16. G. S. Nusinovich, O. Dumbrajs. “Two‐harmonic prebunching of electrons in multicavity gyrodevices”. Phys. Plasmas, 2 (2), 568–577 (1995). DOI:10.1063/1. 870982

    Article  Google Scholar 

  17. G. S. Nusinovich, B. Levush, O. Dumbrajs. “Optimization of multistage harmonic gyrodevices”, Phys. of Plasmas, 3, 8, 3133–3144 (1996) https://doi.org/10.1063/1.871589

  18. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. I. Petelin, P. S. Strelkov. “Relativistic gyrotrons and cyclotron autoresonance masers”, International Journal of Electronics, 51(4), 541-567, (1981) DOI: https://doi.org/10.1080/00207218108901356.

    Article  Google Scholar 

  19. M. I. Petelin. “Selection of operating mode in gyrotrons by electron beam”, Gyrotron (Collection of scientific papers) Gorki, Academy of Sciences of USSR, Ed. A. V. Gaponov-Grekhov, 1981, pp. 77–85 (in Russian).

  20. M. I. Petelin. “Self-excitation of oscillations in a gyrotron”. Gyrotron (Collection of scientific papers) Gorki, Academy of Sciences of USSR, Ed. A. V. Gaponov-Grekhov, 1981, pp. 5–25 (in Russian).

  21. G. S. Nusinovich, and R. E. Erm. “Efficiency of a CRM-monotron with a Gaussian axial distribution of the RF field”, Elektronnaya Tekhnika, Ser. 1, Elektronika SVCh, 8, 55–60 (1972) (in Russian)

  22. K. E. Kreischer, R. J. Temkin, “Linear theory of an electron cyclotron maser operating at the fundamental”. International Journal of Infrared and Millimeter Waves, 1(2), 195-223 (1980). DOI: https://doi.org/10.1007/BF01007116.

    Article  Google Scholar 

  23. V. K. Yulpatov. “Shortened equations of self-oscillations of a gyrotron”. Gyrotron (Collection of scientific papers) Gorki, Academy of Sciences of USSR, Ed. A. V. Gaponov-Grekhov, 1981, pp. 26–40 (in Russian).

  24. K. E. Kreischer, R. J. Temkin. “Mode excitation in a gyrotron operating at the fundamental”. International Journal of Infrared and Millimeter Waves, 2(2), 175-196 (1981) DOI: https://doi.org/10.1007/BF01007027

    Article  Google Scholar 

  25. K. E. Kreischer. User’s manual for LINEAR, a computer program that calculates the linear characteristics of a gyrotron. Technical Report PFC/RR/82–8, Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA, January 1982. Available at: https://dspace.mit.edu/bitstream/handle/1721.1/93446/82rr008_full.pdf?sequence=1 (available October 01, 2023)

  26. G. S. Nusinovich, “Linear theory of a gyrotron with weakly tapered external magnetic field,” Int. J. Electron., 64, 1, 127–135 (1988) https://doi.org/10.1080/00207218808962789.

  27. B. G. Danly, R. J. Temkin. “Generalized nonlinear harmonic gyrotron theory”. The Physics of fluids, 29(2), 561-567 (1986). DOI: 10.1063/1. 865446.

    Article  Google Scholar 

  28. M. K. Hornstein et al. , “Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator”, IEEE Transactions on Electron Devices, 52, 5, 798-807, (2005), DOI: https://doi.org/10.1109/TED. 2005. 845818.

    Article  Google Scholar 

  29. G. S. Nusinovich et al. , “Startup scenarios in high-power gyrotrons”, IEEE Transactions on Plasma Science, 32, 3, 841–852 (2004) https://doi.org/10.1109/TPS.2004.828854.

  30. G. S. Nusinovich. “Mode interaction in gyrotrons”, International Journal of Electronics, 51, 4, 457-474 (1981), DOI: https://doi.org/10.1080/00207218108901349.

    Article  Google Scholar 

  31. G. S. Nusinovich. “Parametric instabilities in gyro-devices at cyclotron harmonics”, International Journal of Electronics, 72, 5-6, 795-805 (1992), DOI: https://doi.org/10.1080/00207219208925615.

    Article  Google Scholar 

  32. G. P. Saraph, T. M. Antonsen Jr, G. S. Nusinovich, B. Levush. “A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz”. Physics of Plasmas, 2(7), 2839-2846 (1995). DOI:10.1063/1. 871182.

    Article  Google Scholar 

  33. D. V. Kisel’, G. S. Korablev, V. G. Pavel’yev, M. I. Petelin, Sh. E. Tsimring, “An experimental study of a gyrotron operating at the second harmonic of the cyclotron frequency with optimized distribution of the high-frequency field”. Radiotekh. Elektron. 19, 4, 782 (1974).

  34. N. I. Zaytsev, T. B. Pankratova, M. I. Petelin, V. A. Flyagin, “Millimeter and submillimeter-wave gyrotrons”. Radiotekh. Elektron. 19, 5, 1056-1060 (1974).

    Google Scholar 

  35. A. V. Gaponov, A. L. Gol’denberg, D. P. Grigor’ev, T. B. Pankratova, M. I. Petelin, V. A. Flyagin, “Experimental investigations of centimeter-band gyrotrons”. Izv. Vyssh. Uchebn. Zaued. , Radiojiz. 18, 2, 280–289 (1975).

  36. J. L. Byerly, B. G. Danly, K. E. Kreischer, R. J. Temkin, W. J. Mulligan, P. P. Woskoboinikow. “Harmonic emission from high-power high-frequency gyrotrons”. International Journal of Electronics, 57, 1033-1047 (1984). DOI:https://doi.org/10.1080/00207218408938983.

    Article  Google Scholar 

  37. S. Spira-Hakkarainen, K. E. Kreischer, R. J. Temkin. “Submillimeter-wave harmonic gyrotron experiment”. IEEE Transactions on Plasma Science, 18, 334-342 (1990). DOI:https://doi.org/10.1109/27.55903.

    Article  Google Scholar 

  38. T. Idehara, T. Tatsukawa, I. Ogawa, Y. Shimizu, S. Makino, T. Kanemaki. “Development of a high frequency, second harmonic gyrotron tunable up to 636 GHz”, Physics of Fluids B: Plasma Physics 5, 1377 (1993) DOI: 10.1063/1. 860928.

    Article  Google Scholar 

  39. G. F. Brand. “Mode competition in a high harmonic tunable gyrotron”. International Journal of Infrared and Millimeter Waves, 15, 45-52 (1994). DOI:https://doi.org/10.1007/BF02265875.

    Article  Google Scholar 

  40. E. Borie, “Study for second harmonic gyrotrons in the submillimeter region”, Int. J. Infr. Millim. Waves, 15, 311–337, (1994) DOI:https://doi.org/10.1007/BF02096244.

    Article  Google Scholar 

  41. T. Idehara, I. Ogawa, Y. Shimizu, T. Tatsukawa. “Higher harmonic operations of submillimeter wave gyrotrons (Gyrotron FU series)”. International journal of infrared and millimeter waves, 19, 803-816 (1998). DOI:https://doi.org/10.1023/A:1022668205783.

    Article  Google Scholar 

  42. T. Notake, T. Saito, Y. Tatematsu, A. Fujii, S. Ogasawara, La. Agusu, I. Ogawa, T. Idehara, V. N. Manuilov. “Development of a novel high power sub-THz second harmonic gyrotron” Physical review letters, 103 22, 225002 (2009). https://doi.org/10.1103/PHYSREVLETT.103.225002.

  43. T. Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, Y. , et al. “Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation”. Physics of Plasmas, 19, 6, (2012). https://doi.org/10.1063/1.4729316

  44. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, “Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator,” IEEE Trans. Plasma Sci. 34, 524 (2006).

    Article  Google Scholar 

  45. M. V. Kartikeyan, E. Borie and M. Thumm. “A 250 GHz, 50 W, CW second harmonic gyrotron”. Int. J. Infrared and Millimeter Waves, 28, 611–619 (2007) DOI: https://doi.org/10.1007/s10762-007-9242-8.

    Article  Google Scholar 

  46. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, “Operation of a continuously frequency-tunable second harmonic CW 330-GHz gyrotron for dynamic nuclear polarization”, IEEE Trans. Electron Devices 58, 2777 (2011).

    Article  Google Scholar 

  47. S. K. Jawla, R. G. Griffin, I. Mastovsky, M. A. Shapiro, R. J. Temkin. “Second Harmonic 527-GHz Gyrotron for DNP-NMR: Design and Experimental Results”. IEEE Transactions on Electron Devices, 67, 328-334 (2020). DOI:https://doi.org/10.1109/TED. 2019. 2953658.

    Article  Google Scholar 

  48. M. Y. Glyavin, A. N. Kuftin, M. V. Morozkin , M. D. Proyavin, A. P. Fokin, et al. “A 250-Watts, 0. 5-THz continuous-wave second harmonic gyrotron”, IEEE Electron Dev. Letters, 42, 11, 1666–1669, (2021) https://doi.org/10.1109/TED.2021.3113022.

  49. M. V. Kartikeyan, E. Borie, O. Drumm, S. Illy, B. Piosczyk, and M. Thumm, “Design of a 42-GHz 200-kW gyrotron operating at the second harmonic”, IEEE Trans. Microw. Theory and Techn., 52, 2, 686–692 (2004) https://doi.org/10.1109/TMTT.2003.822015.

  50. S. Adya, S. Yuvaraj, M. Rawat, M. V. Kartikeyan and M. K. Thumm. “Investigations on RF behavior of a V-Band second harmonic Gyrotron for 100/200 kW operation”, IEEE Trans. Plasma Sci., 50, 2, 222–228 (2022) https://doi.org/10.1109/TPS.2022.3140350.

  51. K. A. Avramides, C. T. Iatrou, and J. L. Vomvoridis.“Design considerations for powerful continuous-wave second-cyclotron harmonic coaxial-cavity gyrotrons”, IEEE Trans. Plasma Sci., 32, 3, 917–928 (2004) https://doi.org/10.1109/TPS.2004.828781.

  52. G. G. Denisov, I. V. Zotova, I. V. Zheleznov, A. M. Malkin, N. S. Ginzburg et al. “Phase-locking of second harmonic gyrotrons for providing MW-level output power” IEEE Trans. Electron Dev., 69, 2, 754–758 (2022) https://doi.org/10.1109/TED.2021.3134187.

  53. A. N. Kuftin, G. G. Denisov, A. V. Chirkov, M. Y. Shmelev, V. I. Belousov, et al. “First demonstration of frequency-locked operation of a 170 GHz/1 MW Gyrotron”, IEEE Electron Dev. Letters, 44, 9, 1563–1566 (2023) https://doi.org/10.1109/LED.2023.3294755

  54. S. Illy, et al. “Progress in the Design of Megawatt-Class Fusion Gyrotrons Operating at the Second Harmonic of the Cyclotron Frequency”. 48th International Conference on Infrared, Millimeter, and THz Waves (IRMMW-THz 2023), Montreal, Canada, 17–22. 09. 2023.

  55. Y. Y. Lau and L. R. Barnett. “Theory of a Low Magnetic Field Gyrotron (Gyromagnetron),” Int. J. Infrared and Millimeter Waves3, 619–644 (1982), also “A Low Magnetic Field Gyrotron-Gyromagnetron,” Int. J. Electronics53, 693–698 (1982).

  56. K. R. Chu, D. Dialetis. “Theory of harmonic gyrotron oscillator with slotted resonant structure”. Int J Infrared Milli Waves 5, 37–56 (1984) DOI: https://doi.org/10.1007/BF01014033.

    Article  Google Scholar 

  57. W. Lawson, W. W. Destler and C. D. Striffler. “High Power Microwave Generation from a Large Orbit Gyrotron”, IEEE Transactions on Nuclear Science, 32, 5, 2960–2962 (1985) https://doi.org/10.1109/TNS.1985.4334240.

  58. W. W. Destler, E. Chojnacki, R. F. Hoeberling, W. Lawson, A. Singh, and C. D. Striffler. “High-power microwave generation from large-orbit devices”. IEEE Transactions on Plasma Science, 16, 2, 71–89 (1988) https://doi.org/10.1109/27.3797.

  59. G. S. Nusinovich. “Non-linear theory of a large-orbit gyrotron”, International Journal of Electronics, 72:5-6, 959-967 (1992), DOI: https://doi.org/10.1080/00207219208925627.

    Article  Google Scholar 

  60. V. L. Bratman, Y. K. Kalynov, A. E. Fedotov. “Theory of gyro devices with thin electron beams (large-orbit gyrotrons)”. Tech. Phys. 43, 1219–1225 (1998) DOI: 10.1134/1. 1259158.

    Article  Google Scholar 

  61. D. B. McDermott, N. C. Luhmann, D. S. Furuno, et al. “Operation of a millimeter-wave harmonic gyrotron”. Int J Infrared Milli Waves 4, 639–664 (1983) DOI: https://doi.org/10.1007/BF01009401.

    Article  Google Scholar 

  62. V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov. “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett., 102, 24, 245101 (2009). https://doi.org/10.1103/PhysRevLett.102.245101.

  63. V. L. Bratman, M. Y. Glyavin, Y. K. Kalynov, et al. “Terahertz Gyrotrons at IAP RAS: Status and New Designs”. J Infrared Milli Terahz Waves 32, 371–379 (2011). DOI: https://doi.org/10.1007/s10762-010-9689-x.

    Article  Google Scholar 

  64. I. V. Bandurkin, V. L. Bratman, Y. K. Kalynov, I. V. Osharin and A. V. Savilov. “Terahertz Large-Orbit High harmonic Gyrotrons at IAP RAS: Recent Experiments and New Designs”, IEEE Transactions on Electron Devices, 65, 6, 2287–2293 (2018) https://doi.org/10.1109/TED.2018.2797311.

  65. I. V. Bandurkin, V. L. Bratman, Y. K. Kalynov, et al. “High harmonic Gyrotrons with Axis-Encircling Electron Beams at IAP RAS”. Radiophys Quantum El, 62, 513–519 (2019). DOI: https://doi.org/10.1007/s11141-020-09997-9

    Article  Google Scholar 

  66. Y. K. Kalynov, I. V. Bandurkin, I. V. Osharin and A. V. Savilov. “Third harmonic 1 THz Large-Orbit Gyrotron With an Improved Quasi-Regular Cavity”, IEEE Electron Device Letters, 44, 10, 1740–1743 (2023) https://doi.org/10.1109/LED.2023.3307161

  67. T. Idehara, I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, et al. “A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet,” IEEE Transactions on Plasma Science, 32, 3, 903-909 (2004). DOI: https://doi.org/10.1109/TPS. 2004. 827614.

    Article  Google Scholar 

  68. X. Li, J. Lang, Y. Alfadhl, X. Chen. “Study of an eighth harmonic large-orbit gyrotron in the terahertz band”. IEEE Transactions on Plasma Science, 43(2), 506-514 (2015). DOI: https://doi.org/10.1109/TPS. 2014. 2384200.

    Article  Google Scholar 

  69. V. E. Zapevalov, V. I. Kurbatov, O. V. Malygin, V. N. Manuilov, G. S. Nusinovich, Sh. E. Tsimring. "The Cyclotron Resonance Maser, Author’s Cert. 786677 (USSR), Priority of July 25, 1979, Recorded in State Registry on Aug. 07, 1980. " Bull. Inv 53.

  70. V. E. Zapevalov, Sh. E. Tsimring. “Multibeam gyrotrons,” Radiophysics and Quantum Electronics, 33, 11, 594-960 (1990). DOI:https://doi.org/10.1007/BF01039240.

    Article  Google Scholar 

  71. V. E. Zapevalov, V. N. Manuilov, Sh. E. Tsimring. “Double-Beam Gyrotron Electron-Optical Systems”, Radiophysics and Quantum Electronics, 34, 2, 174–179 (1991) https://doi.org/10.1007/BF01045526.

  72. V. E. Zapevalov, V. N. Manuilov, O. V. Malygin, Sh. E. Tsimring. “High-power twin-beam gyrotrons operating at the second gyrofrequency harmonic”, Radiophysics and Quantum Electronics, 37, 3, 237-240 (1994). DOI:https://doi.org/10.1007/BF01054034.

    Article  Google Scholar 

  73. D. Liu, X. Yuan, Sh. Liu. “Coupled-mode theory of coaxial gyrotron with two electron beams”, Fusion Engineering and Design, 83, 606-612 (2008).

    Article  Google Scholar 

  74. W. Fu, Y. Yan, X. Yuan, Sh. Liu. “Two-beam magnetron injection guns for coaxial gyrotron with two electron beams,” Phys. Plasmas, 16, 023103 (2009).

    Article  Google Scholar 

  75. V. N. Manuilov, M. Yu. Glyavin, A. S. Sedov, V. Yu. Zaslavsky, T. Idehara, “Design of a Second Harmonic Double-Beam Continuous Wave Gyrotron with Operating Frequency of 0. 79 THz”, Journal of Infrared, Millimeter, and Terahertz Waves, 36, 12, 1164-1175 (2015).

    Article  Google Scholar 

  76. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, et al. “A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy”, Review of Scientific Instruments, 88, 9, 094708 (2017). https://doi.org/10.1063/1.4997994.

  77. S. Mitsudo, M. Glyavin, E. Khutoryan, I. Bandurkin, T. Saito, et al. “An Experimental Investigation of a 0. 8 THz Double-Beam Gyrotron”, Journal of Infrared, Millimeter, and Terahertz Waves, 40, 11–12, 1114–1128 (2019). DOI:https://doi.org/10.1007/s10762-019-00629-6.

    Article  Google Scholar 

  78. G. Denisov, M. Glyavin, A. Tsvetkov et al. “A 45-GHz/20-kW gyrotron-based microwave setup for the fourth-generation ECR ion sources”, IEEE Trans. Electron Dev. 65, 3963 (2018) DOI:https://doi.org/10.1109/TED. 2018. 2859274.

    Article  Google Scholar 

  79. V. Bakunin, G. Denisov and Yu. Novozhilova. “Principal enhancement of THz-range gyrotron parameters using injection locking”. IEEE Electron Dev. Lett. , 41, 777, (2020) DOI:https://doi.org/10.1109/LED. 2020. 2980218.

    Article  Google Scholar 

  80. I. V. Bandurkin, V. L. Bratman, A. V. Savilov, S. V. Samsonov, and A. B. Volkov. “Experimental study of a fourth harmonic gyromultiplier”, Phys. Plasmas, 16, 7, 073101, (2009) https://doi.org/10.1063/1.3179805.

  81. M. Glyavin, et al. “Investigation of the frequency double-multiplication effect in a sub-THz gyrotron”, Journal of Infrared, Millimeter, and Terahertz Waves 41, 1245-1251 (2020)

    Article  Google Scholar 

  82. G. G. Denisov, I. V. Zotova, A. M. Malkin, A. M. Sergeev, R. M. Rozental et al. “Boosted excitation of the fifth cyclotron harmonic based on frequency multiplication in conventional gyrotrons”. Physical Review E, 106, 2, L023203 (2022).

  83. G. Denisov, I. Zotova, I. Zheleznov, A. Malkin, A. Sergeev, et al. “Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th harmonic Multiplication in Gyrotrons”. Appl. Sci. 2022, 12, 11370. DOI: https://doi.org/10.3390/app122211370

    Article  Google Scholar 

  84. S. Hahn, et al. “45. 5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet”. Nature, 570. 7762, 496–499 (2019) https://doi.org/10.1038/s41586-019-1293-1.

  85. H. Bai et al. “The 40 T Superconducting Magnet Project at the National High Magnetic Field Laboratory”, IEEE Transactions on Applied Superconductivity, 30, 4, 4300405 (2020), https://doi.org/10.1109/TASC.2020.2969642.

  86. T. Idehara, I. Ogawa, H. Mori, S. Kobayashi, S. Mitsudo, and T. Saito, “A THz gyrotron FU CW III with a 20T superconducting magnet”, J. Plasma Fusion Res. Series, 8, 1508–1511, (2009). DOI: https://doi.org/10.1109/ICIMW. 2008. 4665652.

    Article  Google Scholar 

  87. T. Idehara, H. Tsuchiya, O. Watanabe, La. Agusu, and S. Mitsudo. “The first experiment of a THz gyrotron with a pulse magnet,” J. Infrared, illimeter, THz Waves, 27, 319–331 (2006) https://doi.org/10.1007/s10762-006-9084-9.

  88. M. Y. Glyavin, A. G. Luchinin, G. Y. Golubiatnikov. “Generation of 1.5 kW, 1 THz coherent radiation from a gyrotron with a pulsed magnetic field”. Physical Review Letters, 100(1), 015101. https://doi.org/10.1103/PhysRevLett.100.015101.

  89. M. Y. Glyavin, A. G. Luchinin and Y. V. Rodin, “Generation of 5 kW/1 THz coherent radiation from pulsed magnetic field gyrotron”, “35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010)”, Rome, Italy, 2010, https://doi.org/10.1109/ICIMW.2010.5612360.

  90. I. V. Bandurkin et al., “1.2 THz Second Harmonic Gyrotron with Selective Groove”, “44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2019)”, Paris, France, 2019, https://doi.org/10.1109/IRMMW-THz.2019.8874410.

  91. I. V. Bandurkin, et al. “Demonstration of a Highly-Selective Oversized Cavity in a Terahertz Gyrotron”, Electron Device Letters, 41, 9, 1412–1415 (2020) https://doi.org/10.1109/LED.2020.3010445

  92. T. Idehara, S. P. Sabchevski. “Gyrotrons for high-power terahertz science and technology at FIR UF”. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 62-86 (2017). DOI:https://doi.org/10.1007/s10762-016-0314-5.

    Article  Google Scholar 

  93. M. Y. Glyavin, A. G. Luchinin, V. N. Manuilov and G. S. Nusinovich, “Design of a Subterahertz, Third harmonic, Continuous-Wave Gyrotron”. IEEE Transactions on Plasma Science, 36, 3, 591–596 (2008) https://doi.org/10.1109/TPS.2008.917530.

Download references

Funding

The presented results of IAP RAS team is supported in part by the project FFUF-2024–0027.

Author information

Authors and Affiliations

Authors

Contributions

S.S. wrote the main manuscript text, G.N and M.G. discussed content, work with text improving and prepare the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Yu. Glyavin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabchevski, S.P., Nusinovich, G.S. & Glyavin, M.Y. Harmonic Gyrotrons: Pros and Cons. J Infrared Milli Terahz Waves 45, 184–207 (2024). https://doi.org/10.1007/s10762-024-00972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-024-00972-3

Keywords

Navigation