Skip to main content

Advertisement

Log in

Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Among various applications of the gyrotrons to the fundamental physical research and to the high-power terahertz science and technologies, the material treatment based on the irradiation by millimeter and sub-millimeter waves is both one of the oldest and most advanced (industrial grade) technologies. In this paper, we present the recent advancements and the current status of both the development of gyrotron-based technological systems and their utilization for processing of diverse advanced materials. The current status of the work in this broad field worldwide is illustrated mainly by representative results obtained during the longstanding (more than 20 years since 1999) and fruitful collaboration between the Institute of Applied Physics of the Russian Academy of Sciences (IAP-RAS) and Research Center for Development of Far-Infrared Region, University of Fukui (FIR-UF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thumm M., “State-of-the-art of high power gyro-devices and free electron masers,” J. Infrared Millimeter, and Terahertz Waves, vol. 41 (2020) 1–140. DOI: https://doi.org/10.1007/s10762-019-00631-y.

    Article  Google Scholar 

  2. Idehara T., Saito T., Ogawa I., Mitsudo S., Tatematsu Y., Sabchevski S., “The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range—A review of novel and prospective applications,” Thin Solid Films, vol. 517 (2008) 1503–1506. https://doi.org/10.1016/j.tsf.2008.09.061.

  3. Kumar N., Singh U., Singh T.P., Sinha A.K., “A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron,” J. Fusion Energy, vol. 30 (2011) 257–276. https://doi.org/10.1007/s10894-010-9373-0

    Article  Google Scholar 

  4. Bratman V.L., Bogdashov A.A., Denisov G.G., Glyavin M.Y., Kalynov Yu.K., Luchinin A.G., Manuilov V.N., Zapevalov V.E., Zavolsky N.A., Zorin V.G., “Gyrotron development for high power THz technologies at IAP AS,” J. Infrared Millimeter, and Terahertz Waves, vol. 33 (2012) 715–723, Apr. 2012. DOI: https://doi.org/10.1007/s10762-012-9898-6.

  5. Temkin R.J., “Development of terahertz gyrotrons for spectroscopy at MIT,” Terahertz Sci. Technol., vol. 7 (2014) 1–9. DOI: https://doi.org/10.11906/TST.001-009.2014.03.01

    Article  MathSciNet  Google Scholar 

  6. Glyavin M.Y., Idehara T., Sabchevski S.P., “Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies,” IEEE Trans. Terahertz Sci. Technol., vol. 5 (2015) 788–797. https://doi.org/10.1109/TTHZ.2015.2442836.

    Article  Google Scholar 

  7. Idehara T., Sabchevski S.P., “Gyrotrons for High-Power Terahertz Science and Technology at FIR UF,” J. Infrared Millimeter, and Terahertz Waves, vol. 38 (2017) 62–86. DOI: https://doi.org/10.1007/s10762-016-0314-5.

    Article  Google Scholar 

  8. Idehara T., Sabchevski S.P., “Development and Application of Gyrotrons at FIR UF,” IEEE Trans. Plasma Sci., vol. 46 (2018) 2452–2459. https://doi.org/10.1109/TPS.2017.2775678

  9. Idehara T., Sabchevski S., Glyavin M., Mitsudo S. “The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging,” Appl. Sci., vol. 10, no. 3 (2020) 980. DOI:https://doi.org/10.3390/app10030980.

    Article  Google Scholar 

  10. Kimrey H.D., Janney M.A., and Becher P.F., “Techniques for ceramic sintering using microwave energy, ” in R. J. Temkin, Ed., Dig. 12th Int. Conf. Infrared and Millimeter Waves, Orlando, FL, 1987, pp. 136-137.

    Google Scholar 

  11. Bykov Y., Gol'denberg A., Flyagin V., “The Possibilities of Material Processing by Intense Millimeter-Wave Radiation,” MRS Proceedings, vol. 189 (1990) 41. DOI:https://doi.org/10.1557/PROC-189-41.

    Article  Google Scholar 

  12. Paton B.E., Sklyarevich V.E., Slusarczuk M.M.G., “Gyrotron processing of materials,” MRS Bull., vol. 18, no. 11 (1993) 58–63. DOI: https://doi.org/10.1017/S0883769400038550.

    Article  Google Scholar 

  13. Osepchuk J.M., "A History of Microwave Heating Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9 (1984) 1200-1224. DOI: https://doi.org/10.1109/TMTT.1984.1132831.

    Article  Google Scholar 

  14. Fu D., Valiev U., Burdick G.W., Pyak P.E., "Interaction of Electromagnetic Radiation with Matter", Science Press, Beijing, 2018. ISBN 9787030564948.

  15. Osepchuk M., "A History of Microwave Heating Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9 (1984) 1200-1224. DOI: https://doi.org/10.1109/TMTT.1984.1132831.

    Article  Google Scholar 

  16. Link G., Feher L., Thumm M., Ritzhaupt-Kleissl H. J., Bohme R., Weisenburger A., “Sintering of Advanced Ceramics Using a 30-GHz, 10-kW, CW Industrial Gyrotron”, IEEE Trans. on Plasma Science, vol. 27, no. 2 (1999) 547-554. DOI:https://doi.org/10.1109/27.772284.

    Article  Google Scholar 

  17. Bykov Yu., Eremeev A., Glyavin M., Kholoptsev V., Luchinin A., Plotnikov I., Denisov G., Bogdashev A., Kalynova G., Semenov V. Zharova N., "24-84-GHz gyrotron systems for technological microwave applications," IEEE Transactions on Plasma Science, vol. 32, no. 1 (2004) 67-72. DOI:https://doi.org/10.1109/TPS.2004.823904.

    Article  Google Scholar 

  18. Dumbrajs O., Thumm M., “Gyrotrons for technological applications,” International Journal of Electronics, 76:2, (1994) 351-364, DOI:https://doi.org/10.1080/00207219408925932

    Article  Google Scholar 

  19. Fliflet A.W., Fischer R.P.,. Kinkead A.K, Bruce R.W., "Pulsed 35 GHz gyrotron with overmoded applicator for sintering ceramic compacts," IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science, Boston, MA, USA, 1996, pp. 105-106.

  20. Fliflet A.W., Sklyarevich V.E., "Material processing system based on a gyrotron powered millimeter-wave beam," 25th Anniversary, IEEE Conference Record - Abstracts. 1998 IEEE International Conference on Plasma Science (Cat. No.98CH36221), Raleigh, NC, USA, 1998, pp. 208. DOI:https://doi.org/10.1109/PLASMA.1998.677702.

  21. Fliflet A.W., Bruce R.W., Fischer R.P., Kinkead A.K., Gold S.H., Ganguly S., "Gyrotron-powered millimeter-wave beam facility for microwave processing of materials," IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297), Monterey, CA, USA, 1999, pp. 151-. DOI: https://doi.org/10.1109/PLASMA.1999.829393.

  22. Sano S., Makino Y., Miyake S., Bykov Yu.V., Eremeev A.G., Egorov S.V., "30 and 83 GHz millimeter wave sintering of alumina," Journal of Materials Science Letters, vol. 19, no. 24 (2000) 2247-2250. DOI:https://doi.org/10.1023/A:1006733125930.

    Article  Google Scholar 

  23. Liu P., Borie E., Kartikeyan M.V., “Design of a 24 GHz, 25-50 kW Technology Gyrotron Operating at the Second Harmonic,” International Journal of Infrared and Millimeter Waves, vol. 21 (2000) 1917–1943. DOI:https://doi.org/10.1023/A:1006768000682.

    Article  Google Scholar 

  24. Bykov Y., Eremeev A., Glyavin M., Holoptsev V.V., Plotnikov I.V., Pavlov (2006) 3.5 kW 24 GHz Compact Gyrotron System for Microwave Processing of Materials. In: Willert-Porada M. (eds) Advances in Microwave and Radio Frequency Processing. Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/978-3-540-32944-2_3.

  25. Link G., Rhee S., Feher L., Thumm, M., (2007). Millimeter Wave Sintering of Ceramics. In Ceramic Materials and Components for Engines (eds J.G. Heinrich and F. Aldinger). doi:https://doi.org/10.1002/9783527612765.ch77.

  26. Glyavin M., Bykov Y., Denisov G., Eremeev A., Idehara T., Mitsudo S., Hoshizuki H., “Development of a compact gyrotron system for microwave processing of materials,” J. Jpn. Soc. Infrared Sci. and Tech, vol. 12 (2002).

  27. Hoshizuki H. Kuroda T., Mitsudo S., Idehara T., Glyavin M., Eremeev A., Tanahashi F., Honda T., Iwai Y., "Sintering of high-quality ceramics using a compact gyrotron system," The 30th International Conference on Plasma Science, 2003. ICOPS 2003. IEEE Conference Record - Abstracts., Jeju, South Korea, 2003, pp. 232-. DOI: https://doi.org/10.1109/PLASMA.2003.1228739.

  28. Mitsudo S., Hoshizuki H., Matsuura K., Saji T., Idehara T., Glyain M., Eremeev A., Zapevalov V., Kitano A., Nishi H., Ishibashi J., "High power millimeter and submillimeter wave material processing," Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004., Karlsruhe, Germany, 2004, pp. 727-728.. DOI: https://doi.org/10.1109/ICIMW.2004.1422298.

  29. Bykov Y.V., Eremeev A.G., Glyavin M.Y. et al. “Millimeter-Wave Gyrotron Research System. I. Description of the Facility,” Radiophysics Quantum Electronics, vol. 61 (2019) 752–762. DOI:https://doi.org/10.1007/s11141-019-09933-6.

    Article  Google Scholar 

  30. Zapevalov V.E., Lygin V.K., Malygin O.V., Moiseev M.A., Karpov V.P., Khizhnjak V.I., Tai E.M., Idehara T., Ogawa I., Mitsudo S., “Development of the 300 GHz 4 kW CW Gyrotron - Proc. Joint 29-th Int. Conf. on Infrared and Millimeter Waves and 12-th Int. Conf. on Terahertz Electronics (Sept 27 – Oct 1, 2004, Karlsruhe, Germany) pp. 149–150

  31. Mitsudo S., Hoshizuki H., Idehara T., Saito T., "Development of material processing system by using a 300 GHz CW gyrotron," Journal of Physics: Conference Series, vol. 51 (2006) 549-552. DOI:https://doi.org/10.1088/1742-6596/51/1/124.

    Article  Google Scholar 

  32. Tierney J.P., Lidström P., ed. Microwave Assisted Organic Synthesis. Oxford: Blackwell Publishing Ltd, 2005.

    Google Scholar 

  33. Artem’v K.V, Batanov G.M., Berezhetskaya N.K., Davydov A.M., Kossyi I.A., Nefedov V.I., Sarksyan K.A., Kharchev N.K. “A Subthreshold High-Pressure Discharge Excited by a Microwave Beam: Physical Basics and Applications”. Plasma Physics Reports 44(6):615-625 (2018) DOI: https://doi.org/10.1134/S1063780X18050021.

    Article  Google Scholar 

  34. Kikunaga T., Asano H., Yasojima Y., Sato F.Tsukamoto T. “A 28 GHz gyrotron with a permanent magnet system”, International Journal of Electronics, 79:5, 655-663 (1995),DOI:https://doi.org/10.1080/00207219508926301

  35. Kuftin A.N., Flyagin V.A., Lygin V.K., Malygin O.V., Zapevalov V.E., Zavolsky N.A., “Technological gyrotrons with permanent magnet system”. 25th International Conference on Infrared and Millimeter Waves, 2000, Beijing, China DOI: https://doi.org/10.1109/ICIMW.2000.893026

  36. Glyavin M.Y., Bykov Y.V., Luchinin A.G., Manuilov V.N., Morozkin M.V., Proyavin M.D., Sobolev D.I., Tai E.M., "Recent Progress in K-band Technological Gyrotrons Development," 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019, pp. 1-1. DOI:https://doi.org/10.1109/IRMMW-THz.2019.8874545.

  37. Morozkin M.V., Glyavin M.Y., Denisov G.G., Luchinin A.G. “A High-Efficiency Second-Harmonic Gyrotron with a Depressed Collector”. Int J Infrared Milli Waves 29, 1004–1010 (2008). DOI:https://doi.org/10.1007/s10762-008-9408-z.

  38. M. Glyavin, A. Luchinin, M. Morozkin “The Ka-band 10-kW CW gyrotron with wide-band 6ast frequency sweep”, Rev. Sci. Instr., 83, 074706 (2012) DOI:https://doi.org/10.1063/1.4738644.

    Article  Google Scholar 

  39. Mitsudo S., Hoshizuki H., Matsuura K., Saji T., Idehara T., Glyavin M., Eremeev A., Honda T., Iwai Y., Nishi N., Kitano A., Ishibashi J., "Ceramics sintering using a 24 GHz gyrotron system," The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828), Kharkov, Ukraine, 2004, pp. 809-811 Vol.2. DOI: https://doi.org/10.1109/MSMW.2004.1346173.

  40. C. Del Rio Bocio, R. Gonzalo, M.S. Ayza, M. Thumm, “Optimal horn antenna design to excite high-order Gaussian beam modes from TE0m smooth circular waveguide modes”, IEEE Trans. on Antennas and Propagation, AP-47 (1999) 1440-1448. https://doi.org/10.1109/8.793324.

  41. S.V. Samsonov, G.G. Denisov, V.L. Bratman, A.A. Bogdashov, M.Yu. Glyavin, A.G. Luchinin, V.K. Lygin, M.K. Thumm “Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide”, IEEE Trans. on Plasma Science, 32, 884-889 (2004) DOI: https://doi.org/10.1109/TPS.2004.828871.

    Article  Google Scholar 

  42. Mitsudo S., Inagaki S., Sudiana I.N., Kuwayama K., “Grain growth in millimeter wave sintered alumina ceramics,” In Advanced Materials Research, vol. 789 (2013) 279-282. https://doi.org/10.4028/www.scientific.net/AMR.789.279.

  43. Sudiana I.N., Ito R., Inagaki S., Kuwayama K., Sako K., Mitsudo, S., “Densification of alumina ceramics sintered by using submillimeter wave gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 34, no. 10 (2013) 627-638. DOI: https://doi.org/10.1007/s10762-013-0011-6.

    Article  Google Scholar 

  44. Sudiana I.N., Mitsudo S., Firihu M.Z., Aripin H., “Effect of high frequency microwaves on the microhardness of alumina ceramic,” Mater. Sci. Forum, vol. 872 (2016) 114–117. :https://doi.org/10.4028/www.scientific.net/MSF.872.114.

  45. Mitsudo S., Sakai K., Idehara T., Saji T., Saito T., Sano S., "Millimeter and submillimeter wave sintering of ceramics," 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007, pp. 267-268. DOI: https://doi.org/10.1109/ICIMW.2007.4516491.

  46. Mitsudo S., Watanabe K., Sako K., Tani S., Nakagawa N., Idehara T., Saito T., Sano S., "Submillimeter wave sintering of pure alumina ceramics," 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, 2010, pp. 1-2. DOI: https://doi.org/10.1109/ICIMW.2010.5613050.

  47. Mitsudo S., Inagaki S., Sudiana I.N., Kuwayama K., “Grain growth in millimeter wave sintered alumina ceramics,” In Advanced Materials Research, vol. 789 (2013) 279-282. https://doi.org/10.4028/www.scientific.net/AMR.789.279.

  48. Sudiana I.N., Ito R., Inagaki S., Kuwayama K., Sako K., Mitsudo S., “Densification of alumina ceramics sintered by using submillimeter wave gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 34, no. 10 (2013) 627-638. DOI:https://doi.org/10.1007/s10762-013-0011-6.

    Article  Google Scholar 

  49. Sudiana I.N., Mitsudo S., Sako K., Inagaki S., Ngkoimani L.O., Usman I., Aripin H., “The microwave effects on the properties of alumina at high frequencies of microwave sintering,” AIP Conference Proceedings, vol. 1719, no. 1 (2016) 03001. DOI:https://doi.org/10.1063/1.4943709.

    Article  Google Scholar 

  50. Mitsudo S., Sako K., Tani S., Sudiana I.N., High Power Pulsed Submillimeter Wave Sintering of Zirconia Ceramics, The 36th Int. Conf. on Infrared, Millimeter and THz Waves (IRMMW-THz 2011), October 2-7, 2011, Hyatt Regency Houston, Houston, Texas, USA. DOI:https://doi.org/10.1109/irmmw-THz.2011.6105135.

  51. Idehara T., Sabchevski S., Mitsudo S., Hoshizuki H. (2003, March). Microwave heating of boron carbide rods. “Microwave heating of boron carbide rods,” Proc. 7th Int. Conf. on Electron Beam Technologies EBT-2003 (1-6 June 2003, Varna, Bulgaria) pp. 113-119.

  52. Hoshizuki H., Mitsudo S., Saji T., Matsuura K., Idehara T., Glyavin M., Eremeev A., Honda T., Iwai Y., Nishi H., Kitano A., Ishibashi J., “High Temperature Thermal Insulation System for Millimeter Wave Sintering of B4C”, International Journal of Infrared and Millimeter Waves, vol. 26, no. 11 (20050 153–1541. DOI:https://doi.org/10.1007/s10762-005-0030-z.

  53. Mitsudo S., Hoshizuki H., Matsuura K., Saji T., Idehara T., Kitano A., Nishi H., Ishibashi J., Sano S., "Non-thermal effects on B4C ceramics sintering, 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, 2005, pp. 225-226 vol. 1. DOI:https://doi.org/10.1109/ICIMW.2005.1572490.

    Article  Google Scholar 

  54. Aripin H., Mitsudo S., Sudiana I.N., Tani S., Sako K., Fujii Y., Saito T., Idehara T., Sabchevski S., “Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 26, no. 11 (2011) 1531–1541. DOI: https://doi.org/10.1007/s10762-011-9797-2.

    Article  Google Scholar 

  55. Aripin H., Mitsudo S., Prima E.S., Sudiana I.N., Tani S., Sako K., Fujii Y., Saito T., Idehara T., Sano S., Sunendar B., Sabchevski S., “Structural and microwave properties of silica xerogel glass-ceramic sintered by sub-millimeter wave heating using a gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, no. 11 (2012) 1149–1162. DOI: https://doi.org/10.1007/s10762-012-9925-7.

    Article  Google Scholar 

  56. Aripin H., Mitsudo S., Sudiana I.N., Nundang B., Sabchevski S., "Volumetric Microwave Heating of Mullite Ceramic Using a 28 GHz Gyrotron," International Journal of Materials Science and Engineering, vol. 6, no. 1 (2018) 32-38. DOI:https://doi.org/10.17706/ijmse.2018.6.1.32-38.

  57. Sudiana I.N., Mitsudo S., Susilowati P.E., Lestari L., Firihu M.Z., Aripin H., "Synthesis and Characterization of Microwave Sintered Silica Xerogel Produced from Rice Husk Ash,” Journal of Physics: Conference Series," vol. 739 (2016) 012059. DOI:https://doi.org/10.1088/1742-6596/739/1/012059.

    Article  Google Scholar 

  58. Bykov Y.V., Egorov, S.V., Eremeev A.G., Plotnikov I.V., Rybakov K.I., Sorokin A.A., Kholoptsev V.V., “Flash sintering of oxide ceramics under microwave heating,” Technical Physics, vol. 63, no. 3 (2018) 391-397. DOI: https://doi.org/10.1134/S1063784218030052.

    Article  Google Scholar 

  59. Bykov Y.V., Egorov S.V., Eremeev A.G., Plotnikov I.V., Rybakov K.I., Semenov V.E., Sorokin A.A., Holoptsev V.V., “Fabrication of metal-ceramic functionally graded materials by microwave sintering,” Inorg. Mater. Appl. Res., vol. 3 (2012) 261–269. DOI:https://doi.org/10.1134/S2075113312030057.

    Article  Google Scholar 

  60. Rybakov K.I., Buyanova M.N., “Microwave resonant sintering of powder metals,” Scripta Materialia, vol. 149 (2018) 108-111. DOI:https://doi.org/10.1016/j.scriptamat.2018.02.014.

    Article  Google Scholar 

  61. Link, G., Mahmoud M.M., Thumm M. “Dilatometric study and in Situ resistivity measurements during millimeter wave sintering of metal powder compacts”. In: Processing and Properties of Advanced Ceramics and Composites IV; Ceramic Transactions, Vol. 234, Wiley, Edited by J.P. Sing, et al., The American Ceramic Society, 145-150 (2012) DOI: https://doi.org/10.1002/9781118491867.ch16

  62. Mahmoud M.M., Link G., Thumm M. “The role of native oxide shell on the microwave sintering of copper metal powder compacts,” Journal of Alloys and Compounds, vol. 627 (2015) 231-237. https://doi.org/10.1016/j.jallcom.2014.11.180.

  63. Bykov Yu.V., Egorov S.V., Eremeev, A.G., Plotnikov I.V., Rybakov K.I., Sorokin A.A., Kholoptsev V.V., “Millimeter-Wave Gyrotron System for Research and Application Development. II High-Temperature Processes in Polycrystalline Dielectric Materials,” Izvesiya vuzov Radiofizika, vol. LXI, № 11 (2018). In Russian.

  64. Egorov S.V., Eremeev A.G., Kholoptsev V.V., Plotnikov I.V., Rybakov K.I., Sorokin A.A., “Rapid consolidation of hydroxyapatite using intense millimeter-wave radiation,” Materials Today: Proceedings, vol. 25, Part 3 (2020) 349-351. DOI:https://doi.org/10.1016/j.matpr.2019.12.081.

  65. Tsvetkov A.I., Vodopyanov A.V., Mansfeld D.A., Fokin A.P., “The Temperature Behavior of Microwave Absorption of Metal Oxide Powders When Heated by a 263-GHz Gyrotron Radiation,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 40, no. 10 (2019). 991-997. DOI:https://doi.org/10.1007/s10762-019-00622-z.

    Article  Google Scholar 

  66. Toda Y., Ishiyama S., Khutoryan E., Idehara T., Matsuishi S., Sushko P.V., Hosono H., "Rattling of Oxygen Ions in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light," ACS Nano, vol. 11, no. 12 (2017) 12358-12364. DOI:https://doi.org/10.1021/acsnano.7b06277.

    Article  Google Scholar 

  67. Kato K., Qiu H., Khutoryan E.M., Tatematsu Y., Tani M., Idehara T., Yamaguchi Y., Fukunari M., Maeda Y., Takayama K., Minami Y., Empizol M J F., Kurihara T., Yamanoi K., Shimizu T., Takano K., Sarukura N., Fukuda T., Yoshimura M., Nakajima M., “Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam,” Appl. Phys. Lett., vol. 111, no. 3 (2017) 031108. DOI: https://doi.org/10.1063/1.4994316.

Download references

Funding

The work has been carried out in the framework of the collaboration of the International Consortium for Development of High-Power Terahertz Science and Technology (visit: http://fir.u-fukui.ac.jp/Website_Consortium/) organized and facilitated by the Research Center for Development of Far-Infrared Region at the University of Fukui, and supported by Gyro Tech Co., Ltd., Fukui (Japan). The work of the Russian team has been supported under the project 0035-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Glyavin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M., Sabchevski, S., Idehara, T. et al. Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects. J Infrared Milli Terahz Waves 41, 1022–1037 (2020). https://doi.org/10.1007/s10762-020-00727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00727-w

Keywords

Navigation