Skip to main content
Log in

High-Harmonic Gyrotrons with Axis-Encircling Electron Beams at IAP RAS

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The Institute of Applied Physics of the Russian Academy of Sciences has for many years been developing sub-terahertz and terahertz large-orbit gyrotrons that permit selective oscillation at higher cyclotron harmonics than is possible in the conventional gyrotrons. Currently, experimental studies are conducted at two specialized facilities. A prototype universal sub-terahertz source for magnetic resonance spectroscopy is studied using a facility that generates long-pulse and continuous electron beams with particle energies of up to 30 KeV. Continuous selective oscillation at the second and third cyclotron harmonics with frequencies of 0.267 and 0.394 THz was obtained for a radiation power of 900 and 370 W, respectively. New resonators with periodic phase correctors have been developed to increase the efficiency of third-harmonic oscillation and obtain fourth-harmonic oscillation with frequencies of up to 0.65 THz. Using a facility with an electron energy of up to 80 KeV, we study the possibilities of increasing the pulse generation power at the third harmonic at frequencies close to 1 THz to employ in experiments on obtaining a gas discharge in a focused terahertz wave beam and generating high-power extreme ultraviolet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Idehara, H. Tsuchiya, O. Watanabe, et al., Int. J. Infrared MM Waves, 27, No. 3, 319 (2006).

  2. M. K. Hornstein, V. S. Bajaj, R.G.Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 34, No. 3, 524 (2006).

  3. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, Phys. Rev. Lett ., 100, No. 1, 015101 (2008).

  4. A.C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Dev., 58, No. 8, 2777 (2011).

  5. T. Idehara and S.P. Sabchevski, J. Infrared MM Terahertz Waves, 33, No. 7, 667 (2012).

  6. M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, et al., Appl. Phys. Lett ., 101, No. 15, 153503 (2012).

  7. S. Alberti, F. Braunmueller, T. M. Tran, et al., Phys. Plasmas, 19, No. 12, 123102 (2012).

  8. T. Idehara, M. Glyavin, A. Kuleshov, et al., Rev. Sci. Instr., 88, 094708 (2017).

  9. H. Jory, “Investigation of electronic interaction with optical resonators for microwave generation and amplification,” R& D Tech. Rep. ECOM-01873-F, Varian Associates, Palo Alto (1968).

  10. D. B. McDermott, N.C. Luhmann, Jr., A. Kupiszewski, and H.R. Jory, Phys. Fluids, 26, No. 7, 1936 (1983).

  11. W. Lawson, W.W. Destler, and C. D. Striffler, IEEE Trans. Plasma Sci., 13, No. 6, 444 (1985).

  12. K. Irwin, W. W. Destler, W. Lawson, et al., J. Appl. Phys., 69, No. 2, 627 (1991).

  13. V. L. Bratman, A. E. Fedotov, Y.K.Kalynov, et al., IEEE Trans. Plasma Sci., 27, No. 2, 456 (1999).

  14. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, Phys. Plasmas, 17, No. 8, 073101 (2010).

  15. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731 (2005).

  16. I.V.Bandurkin, V. L. Bratman, Y. K. Kalynov, et al., IEEE Trans. Electron Devices, 65, 2287 (2018).

  17. V. L. Bratman, Y.K.Kalynov, and V.N.Manuilov, Phys. Rev. Lett ., 102, No. 24, 245101 (2009).

  18. Yu.K.Kalynov, V.N.Manuilov, A. Sh. Fiks, and N. A. Zavolskiy, Appl. Phys. Lett ., 114, 213502 (2019).

  19. V. L. Bratman, V. G. Zorin, Yu.K.Kalynov, et al., Phys. Plasmas, 18, 083507 (2011).

  20. V. L. Bratman, I. V. Izotov, Yu.K.Kalynov, et al., Phys. Plasmas, 20, 123512 (2013).

  21. A. G. Shalashov, A.V.Vodopyanov, I. S. Abramov, et al., Appl. Phys. Lett ., 113, 153502 (2018).

  22. A. Shalashov and E. Gospodchikov, IEEE Trans. Anten. Propag., 64, No. 9, 3960 (2016).

  23. I. S. Abramov, E. D. Gospodchikov, and A. G. Shalashov, Phys. Rev. Appl., 10, 034065 (2018).

  24. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, IEEE Trans. Electron Devices, 62, No. 7, 2356 (2915).

  25. I.V.Bandurkin, Y. K. Kalynov, I.V. Osharin, and A.V. Savilov, Phys. Plasmas, 23, No. 1, 013113 (2916).

  26. I.V.Bandurkin, Y. K. Kalynov, P.B.Makhalov, et al., IEEE Trans. Electron Devices, 64, No. 1, 300 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Savilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 574–581, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Bratman, V.L., Kalynov, Y.K. et al. High-Harmonic Gyrotrons with Axis-Encircling Electron Beams at IAP RAS. Radiophys Quantum El 62, 513–519 (2019). https://doi.org/10.1007/s11141-020-09997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-09997-9

Navigation