Skip to main content
Log in

A Compact Wideband Two-Stage LNA with Multiple Notches for Out-of-Band Filtering Using Center-Tap Inductors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In order to improve the out-of-band interference filtering in the front-end of a wideband radio frequency system, this paper proposes a two-stage low-noise amplifier (LNA) that has three notches in its transfer function. In the proposed LNA, two center-tap inductors are utilized, where the center-tap inductor is modeled as two equal inductors with a mutual coupling. Here, by properly designing these two inductors and their coupling, in the utilized two center-tap inductors, three notches and proper peaking in the transfer function of the LNA, as well as input matching, are simultaneously realized. The proposed LNA is fabricated in 65 nm CMOS, and its active area is 0.13 mm2. The LNA shows three notches at 2.9 GHz, 13.1 GHz and 17.2 GHz. Moreover, the 3 dB BW is from 5.4 GHz to 8.7 GHz, sufficiently wide to operate in the worldwide ultra-wideband (UWB) regulated spectrum. The proposed LNA power consumption is 9.9 mW from a 1.1 V supply, with a minimum noise figure of 3.4 dB and a gain of 24.8 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Battista, J. Gaubert, M. Egels, S. Bourdel, H. Barthélémy, High-voltage-gain CMOS LNA for 6–8.5 GHz UWB receivers. IEEE Trans. Circuits Syst. II Express Briefs 55(8), 713–717 (2008)

    Google Scholar 

  2. J.F. Chang, Y.S. Lin, 0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body bias technique. Electron. Lett. 47(11), 658–659 (2011)

    Article  Google Scholar 

  3. J.F. Chang, Y.S. Lin, 3.2-9.7 GHz ultra-wideband low-noise amplifier with excellent stop-band rejection. Electron. Lett. 48(1), 44–45 (2012)

    Article  Google Scholar 

  4. J.F. Chang, Y.S. Lin, Complementary current-reused 3.7–11.9 GHz LNA using body-floating and self-bias technique for sub-6 GHz 5G communications. Circuits Syst. Signal Process. 1–22, 5968–5989 (2022)

    Article  Google Scholar 

  5. B. Guo, X. Li, A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique. IEEE Microwave Wirel. Compon. Lett. 23(11), 608–610 (2013)

    Article  Google Scholar 

  6. J. Jang, H. Kim, G. Lee, T.W. Kim, Two-stage compact wideband flat gain low-noise amplifier using high-frequency feedforward active inductor. IEEE Trans. Microw. Theory Tech. 67(12), 4803–4811 (2019)

    Article  Google Scholar 

  7. M. Lee, K. Ickjin, 3–10 GHz noise-cancelling CMOS LNA using gm-boosting technique. IET Circuits Dev. Syst. 12(1), 12–16 (2018)

    Article  Google Scholar 

  8. N. Li, W. Feng, X. Li, A CMOS 3–12 GHz Ultra-wideband low noise amplifier by dual-resonance network. IEEE Microw. Wirel. Compon. Lett. 27(4), 383–385 (2017)

    Article  Google Scholar 

  9. Y. Li, X. Li, Z. Huang, T. Tan, D. Chen, C. Cao, Z. Qi, A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA. IEEE Trans. Microw. Theory Tech. 69(3), 1684–1697 (2021)

    Article  Google Scholar 

  10. Z. Li, B. Liu, Y. Duan, Z. Wang, Z. Li, Y. Zhuang, Flat high gain design and noise optimization in SiGe low-noise amplifier for S-K band applications. Circuits Syst. Signal Process. 40(6), 2720–2740 (2021)

    Article  Google Scholar 

  11. C.P. Liang, P.Z. Rao, T.J. Huang, S.J. Chung, Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers without-band rejection. IEEE Trans. Microw. Theory Tech. 58(2), 277–286 (2010)

    Article  Google Scholar 

  12. J.Y. Lin, H.K. Chiou, Power constrained third-order active notch filter applied in IR-LNA for UWB standards. IEEE Transactions on Circuits and System II: Express Briefs 58(1), 11–15 (2011)

    Google Scholar 

  13. C.Y. Lin, C.P. Liang, J.H. Tarng, S.J. Chung, Compact composite noise-reduction LNA for UWB WPAN and WBAN applications. IET Microw. Antennas Propag. 12(6), 903–908 (2018)

    Article  Google Scholar 

  14. Y.S. Lin, C.C. Wang, G.L. Lee, C.C. Chen, High-performance wideband low—noise amplifier using enhanced π-match input network. IEEE Microwave Wirel. Compon. Lett. 24(3), 200–202 (2014)

    Article  Google Scholar 

  15. B. Park, S. Choi, S. Hong, A low-noise amplifier with tunable interference rejection for 3.1 to 10.6-GHz UWB systems. IEEE Microwave Wirel. Compon. Lett. 20(1), 40–42 (2010)

    Article  Google Scholar 

  16. M. Parvizi, K. Allidina, M.N. El-Gamal, A sub—mw, ultra—low—voltage, wideband low—noise amplifier design technique. IEEE Trans Very Larg-Scale Int (VLSI) Syst 23(6), 1111–1122 (2015)

    Article  Google Scholar 

  17. B. Razavi, RF Microelectronics, vol. 2 (Prentice Hall, New York, 2012)

    Google Scholar 

  18. B. Razavi, Fundamentals of microelectronics (John Wiley & Sons, 2013)

    Google Scholar 

  19. S.S. Regulagadda, B.D. Sahoo, A. Dutta, K.Y. Varma, V.S. Rao, A packaged noise-canceling high-gain wideband low noise amplifier. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 11–15 (2019)

    Google Scholar 

  20. SPARK SR1020 UWB Wireless transceiver, spark microsystems Inchttps://www.sparkmicro.com/products/

  21. A. Taibi, M. Trabelsi, A. Slimane, A.A. Saadi, M.T. Belaroussi, Efficient UWB low noise amplifier with high out of band interference cancellation. IET J. Microwave Antennas Propagation 11(1), 98–105 (2017)

    Article  Google Scholar 

Download references

Funding

There is no funding for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taherzadeh.

Ethics declarations

Conflict of Interest

There is no conflict of interest for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

This appendix shows the details of the KCL equations to derive the input–output transfer function of the 1st stage of the proposed LNA. Considering the circuit model of the 1st LNA stage, shown in Fig. 3, the following can be written:

$$ k_{1} = M_{1} /L_{1} $$
$$ v_{1} = L_{1} \cdot s \cdot i_{1} + M_{1} \cdot s \cdot i_{2} $$
$$ v_{2} = M_{1} \cdot s \cdot i_{1} + L_{1} \cdot s \cdot i_{2} $$
$$ v_{1} = v_{i} - v_{gs1} $$
$$ v_{2} = v_{gs1} - v_{x} $$
$$ i_{1} = i_{2} + C_{gs1} \cdot s \cdot v_{gs1} + C_{gd1} \cdot s\left( {v_{gs1} - v_{o1} } \right) $$
$$ i_{2} = \left( {v_{x} - v_{o1} } \right)/R_{F} + C_{ind1} \cdot s\left( {v_{x} - v_{i} } \right) + C_{B1} \cdot s \cdot v_{x} $$
$$ g_{m1} v_{gs1} + \left( {C_{L1} .s + r_{o1}^{ - 1} } \right)v_{o1} + \left( {v_{o1} - v_{x} } \right)/R_{F} + C_{gd1} .s\left( {v_{o1} - v_{gs1} } \right) = 0 $$
$$ v_{in} = R_{S} \cdot i_{in} + v_{i} $$
$$ i_{in} = i_{1} + C_{ind} \cdot s\left( {v_{i} - v_{x} } \right) + C_{p} \cdot s \cdot v_{i} $$

Note that, here, k1 is the coupling factor between the two inductors in L1 and L2, and M1 and M2 are the resulting mutual inductances. Moreover, RS is the source impedance of 50 Ω. The resulting transfer functionVo1/Vin has 6 poles and 4 zeros. Considering a third-order s-domain transfer function for the numerator and denominator results in:

$$ A_{V1} = \frac{{v_{o1} }}{{v_{in} }} = \frac{{a_{3} s^{3} + a_{2} s^{2} + a_{1} s + a_{0} }}{{b_{3} s^{3} + b_{2} s^{2} + b_{1} s + b_{0} }} $$

where

$$ a_{3} = R_{F} r_{o1} \left( {2C_{gd1} C_{ind1} + C_{gd1} C_{B1} } \right)\left( {L_{1} + M_{1} } \right) $$
$$ \begin{aligned} a_{2} & = r_{o1} \left[ L_{1} \left( {C_{gd1} + 2C_{ind1} } \right) + M_{1} \left( {2C_{ind1} - C_{gs1} } \right) \right. \\ &\quad \left. - g_{m1} R_{F} \left( {L_{1} + M_{1} } \right)\left( {2C_{ind1} + C_{B1} } \right) \right] \end{aligned} $$
$$ a_{1} = r_{o1} \left( {R_{F} C_{gd1} - g_{m1} M_{1} + g_{m1} L_{1} } \right) $$
$$ a_{0} = r_{o1} \left( {1 - g_{m1} R_{F} } \right) $$
$$ b_{3} = \left( {L_{1} ^{2} - M_{1} ^{2} } \right)\left( {C_{{gd1}} + C_{{gs1}} + C_{{gd1}} r_{{o1}} g_{{m1}} } \right) + ~L_{1} r_{{o1}} R_{S} [C_{{L1}} \left( {C_{{g~d1}} + c_{{gs1}} + 2C_{{ind1}} + 2C_{P} } \right) + C_{{gd1}} \left( {C_{{gs1}} + C_{P} + C_{{B1}} } \right) + C_{{gs1}} \left( {2C_{{ind1}} + C_{P} + C_{{B1}} } \right) + 2C_{{ind1}} \left( {C_{P} + C_{{B1}} } \right) + 2C_{P} C_{{B1}} ] + L_{1} r_{{o1}} R_{F} \left[ {C_{{L1}} (C_{{gd1}} + C_{{gs1}} + 2C_{{ind1}} + 2C_{{B1}} ) + C_{{gd1}} \left( {C_{{gs1}} + 2C_{{ind1}} + 2C_{{B1}} } \right)} \right] + L_{1} R_{S} R_{F} \left[ {(2C_{{ind1}} + C_{P} + C_{{B1}} )\left( {C_{{gd1}} + C_{{gs1}} } \right) + 2C_{{ind1}} \left( {C_{P} + C_{{B1}} } \right) + 2C_{P} C_{{B1}} } \right] + 2M_{1} r_{{o1}} R_{S} \left[ {C_{{L1}} \left( {C_{{ind1}} + C_{P} } \right) + C_{{ind1}} \left( {C_{{gs1}} + C_{P} + C_{{B1}} } \right) + C_{P} C_{{B1}} } \right] + 2M_{1} r_{{o1}} R_{F} \left[ {C_{{L1}} \left( {C_{{ind1}} + C_{{B1}} } \right) + C_{{gd1}} (C_{{ind1}} + C_{{B1}} )} \right] + 2M_{1} R_{S} R_{F} \left[ {C_{{ind1}} \left( {C_{{gd1}} + C_{{gs1}} + C_{P} + C_{{B1}} } \right) + C_{P} C_{{B1}} } \right] + ~2M_{1} r_{{o1}} R_{S} R_{F} g_{{m1}} C_{{gd1}} C_{{ind1}} + L_{1} r_{{o1}} R_{S} R_{F} g_{{m1}} C_{{gd1}} \left( {2C_{{ind1}} + C_{{B1}} + C_{P} } \right) $$
$$ \begin{aligned} b_{2} = & L_{1} r_{o1} \left( {2C_{L1} + C_{gd1} + C_{gs1} + 2C_{ind1} + 2C_{B1} } \right) \\ &\quad + L_{1} R_{S} \left( {C_{gd1} + C_{gs1} + 2C_{ind1} + 2C_{P} } \right) \\ & + L_{1} R_{F} \left( {C_{gd1} + C_{gs1} + 2C_{ind1} + 2C_{B1} } \right) + 2M_{1} r_{o1} \left( {C_{L1} + C_{ind1} + C_{B1} } \right) \\ & + 2R_{S} M_{1} \left( {C_{ind1} + C_{P} } \right) + 2R_{F} M_{1} \left( {C_{ind1} + C_{B1} } \right) \\ & + L_{1} r_{o1} R_{S} g_{m1} \left( {C_{gd1} + 2C_{ind1} + C_{P} } \right) + L_{1} r_{o1} R_{F} g_{m1} C_{gd1} \\ & + M_{1} r_{o1} R_{S} g_{m1} \left( {2C_{ind1} + C_{P} } \right) + r_{o1} R_{S} R_{F} C_{L1} \left( {C_{gd1} + C_{gs1} + C_{P} + C_{B1} } \right) \\ & + r_{o1} R_{S} R_{F} C_{gd1} \left( {C_{gs1} + C_{P} + C_{B1} } \right) \\ \end{aligned} $$
$$ \begin{aligned} b_{1} = & 2\left( {L_{1} + M_{1} } \right) + r_{o1} g_{m1} \left( {L_{1} + M_{1} } \right) \\ &\quad + r_{o1} R_{S} \left( {C_{L1} + C_{gs1} + C_{P} + C_{B1} } \right) + r_{o1} R_{F} \left( {C_{L1} + C_{gd1} } \right) \\ & + R_{S} R_{F} \left( {C_{gd1} + C_{gs1} + { }C_{P} + C_{B1} } \right) + R_{S} R_{F} r_{o1} g_{m1} C_{gd1} \\ \end{aligned} $$
$$ b_{0} = R_{F} + R_{S} + r_{o1} + R_{S} r_{o1} g_{m1} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamati, M., Taherzadeh, M. & Nabki, F. A Compact Wideband Two-Stage LNA with Multiple Notches for Out-of-Band Filtering Using Center-Tap Inductors. Circuits Syst Signal Process 42, 2573–2588 (2023). https://doi.org/10.1007/s00034-022-02254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02254-6

Keywords

Navigation