Skip to main content
Log in

Switchless compact dual-band matching networks for class-E power amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Two compact switchless dual-band load networks for class-E power amplifier (PA) operating at 800 and 1900 MHz are proposed, featuring small area and low loss which will be suitable for non-concurrent dual-band PA module in handset. Theoretical analysis and design equations are provided along with a loss model, including loss in the transistor and in the load network. Loss model is extracted for each structure to find the design parameters for optimized and balanced efficiency in both bands. Both designs are fabricated on Rogers RO4003 substrate with lumped components. Full PA simulations of both bands are carried out with co-simulation using a Triquint TGF2023-2-10 GaN transistor model, lumped components and EM models of load network layouts for both structures. The PA with transformer-based load network achieves a power added efficiency of 68.6 % at low band and 62.6 % at high band at an output power of 37.8 and 36.7 dBm respectively. The overall area consumed by the load network is 13.5 × 9.6 mm2. The LC-based PA has a similar PAE of 68.3 and 60 % at low band and high band, respectively. The output power is 38.1 dBm in the low band and 37 dBm in the high-band. The overall area consumed by the load network is 9 × 10 mm2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen, K., & Peroulis, D. (2011). Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks. IEEE Transactions on Microwave Theory and Techniques, 59, 3162–3173.

    Article  Google Scholar 

  2. Moon, J., Son, J., Lee, J., Kim, J., Jee, S., Kim, S., & Kim, B. (2011). A multimode/multiband envelope tracking transmitter with broadband saturated amplifier. IEEE Transactions on Microwave Theory and Techniques, 59, 3463–3473.

    Article  Google Scholar 

  3. Chen, K., & Peroulis D. (2012). Design of broadband high-efficiency power amplifier using in-band class-f and inverse class-f mode-transferring technique. IEEE MTT-S Int. Microwave Symposium, pp. 1–3.

  4. Fano, R. M. (1948). Theoretical limitations on the broadband matching of arbitrary impedances. Massachusetts InstItute of Technology Research Laboratory of Electronics, 41, 1–48.

    Google Scholar 

  5. Carlin, H. J., & Crepeau, P. J. (1961). Theoretical limitations on the broadband matching of arbitrary impedances. IRE Transaction on Circuit Theory, 8, 165.

    Article  Google Scholar 

  6. Rawat, K., Hashmi, M. S., & Ghannouchi, F. M. (2012). Dual-band RF circuits and components for multi-standard software defined radios. IEEE Circuits and Systems Magazine, 12, 12–32.

    Article  Google Scholar 

  7. Vatankhah, A., & Boumaiza, S. (2009). On wideband/multi-band power amplifier suitable for software defined radios in cognitive networks. In International Conference on Signals, Circuits and Systems, pp. 1–6.

  8. Larcher, L., Brama, R., Ganzerli, M., Iannacci, J., Bedani, M., & Gnudi, A. (2009). A MEMS reconfigurable quad-band class-E power amplifier for GSM standards. Design, Automation & Test in Europe Conference & Exhibition, pp. 364–368.

  9. Kim, K. Y., Kim, W. Y., Son, H. S., Oh, I. Y., & Park, C. S. (2011). A reconfigurable quad-band CMOS class E power amplifier for mobile and wirless applications. IEEE Microwave and Wireless Components Letters, 21(7), 380–382.

    Article  Google Scholar 

  10. Chen, P., He, S., Wang, X., & Dai, Z. (2014). 1.7/2.6 GHz high-efficiency concurrent dual-band power amplifier with dual-band harmonic wave controlled transformer. IEEE Electronics Letters, 50(3), 184–185.

    Article  Google Scholar 

  11. Fu, X., Bespalko, D. T., & Boumaiza, S. (2013). Novel dual-band matching network for effective design of concurrent dual-band power amplifiers. IEEE Transaction on Circuits and Systems I, 61, 293–301.

    Article  Google Scholar 

  12. Gao, S., Want, Z., & Park, C.-W. (2001). Concurrent dual-band power amplifier with second harmonic controlled by gate and drain bias circuit. In IEEE Int. Microwave Technology & Computational Electromagnetics, pp. 309–312.

  13. Uchida, K., Takayama, Y., Fujita, T., & Maenaka, K. (2005) Dual-band GaAs FET power amplifier with two-frequency matching circuits. Asia-Pacific Microwave Conference, vol. 1.

  14. Huynh, C., & Nguyen, C. (2013). New technique for synthesizing concurrent dual-band impedance-matching filtering networks and 0.18 um SiGe BiCMOS 25.5/37-GHz concurrent dual-band power amplifier. IEEE Transaction on Microwave Theory and Techniques, 61(11), 3927–3939.

    Article  Google Scholar 

  15. Neihart, N. M., Brown, J., & Yu, X. (2012). A dual-band 2.45/6 GHz CMOS LNA Utilizing a dual-resonant transformer-based matching network. IEEE Transaction on Circuits and Systems I, 59, 1743–1751.

    Article  MathSciNet  Google Scholar 

  16. Yu, X., El-Gouhary, A., & Neihart, N. M. (2014). A transformer-based dual-coupled triple-mode CMOS LC-VCO. IEEE Transaction on Microwave Theory and Techniques, 62(9), 2059–2070.

    Article  Google Scholar 

  17. Sokal, N. O., & Sokal, A. D. (1975). Class E-a new class of high-efficiency tuned single-ended switching power amplifier. IEEE Journal of Solid-State Circuits, 10(3), 168–176.

    Article  Google Scholar 

  18. Grebennikov, A., Sokal, N. O., & Franco, M. J. (2012). Switchmode RF and microwave power amplifiers (2nd ed., p. 190). Waltham, MA: Elsevier.

    Google Scholar 

  19. Silva, F. G. S., de Lima, R. N., & Freire, R. C. S. (2013). A 433/915-MHz class AB discrete power amplifier based on multi-resonant circuits. In IEEE Symposium Integrate Circuit & Syst. Design, pp. 1–6.

  20. Uchida, K. et al. (2005). Dual-band GaAs FET power amplifier with two-frequency matching circuits. IEEE APMC, 1.

  21. Fukuda, A. et al., (2011). A concurrent multi-band power amplifier with compact matching networks. In IEEE Symposium General Assembly and Scientific, pp. 1–4.

  22. Kalim D., & Negra, R. (2001). Concurrent planar multi-harmonic dual-band load coupling network for switching-mode power amplifier. IEEE IMS, pp. 1–4.

  23. Chen, Peng, et al. (2014). 1.7/2.6 GHz high-efficiency concurrent dual-band power amplifier with dual-band harmonic wave controlled transformer. IET Electronics Letter, 50(3), 184–185.

    Article  Google Scholar 

  24. Paul S., et al. (2012). Concurrent dual-band GaN-HEMT power amplifier at 1.8 GHz and 2.4 GHz. IEEE WAMICON, pp. 1–5.

Download references

Acknowledgments

The authors would like to thank Qorvo, Cedar Rapids, USA for providing technical support during fabrication and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan M. Neihart.

Appendices

Appendix 1: Derivation of effective inductance for LC-based load network

Referring to Fig. 2, the effective impedance of the combination of \(L_{1}\), \(L_{2}\), and \(C_{2}\) is inductive at both \(\omega_{L}\) (denoted \(L_{eff,L}\)) and \(\omega_{H}\) (denoted \(L_{eff,H}\)). For the low-band we can write:

$$j\omega_{L} L_{eff,L } = j\omega_{L} L_{1} + \left( {j\omega_{L} L_{2} \parallel \frac{1}{{j\omega_{L} C_{2} }}} \right) = j\omega_{L} L_{1} + \left( {\frac{1}{{j\omega_{L} L_{2} }} + j\omega_{L} C_{2} } \right)^{ - 1}$$
(19)

which can be written as:

$$j\omega_{L} L_{eff,L } = j\omega_{L} L_{1} + \frac{{j\omega_{L} L_{2} }}{{1 - \omega_{L}^{2} L_{2} C_{2} }}$$
(20)

previously we defined: \(\omega_{2} = 1/\sqrt {L_{2} C_{2} }\) and using this definition we can write:

$$j\omega_{L} L_{eff,L } = j\omega_{L} L_{1} + \frac{{j\omega_{l} L_{2} }}{{1 - \omega_{L}^{2} /\omega_{2}^{2} }} .$$
(21)

Finally, (21) can be written in the form of (5) as:

$$j\omega_{L} L_{eff,L } = j\left( {\omega_{L} L_{1} - \omega_{2} L_{2} \frac{{\omega_{L} \omega_{2} }}{{\omega_{L}^{2} - \omega_{2}^{2} }}} \right) .$$
(22)

The same derivation is used for (6) just substituting \(\omega_{H}\) for \(\omega_{L}\).

Appendix 2: Derivation of effective impedance and harmonic impedance for transformer-based load network

The derivation of (9) is based on the model shown in Fig. 18 where \(R_{2}\) represents the parasitic resistance of \(L_{2}\). The port voltages \(V_{1}\) and \(V_{2}\) can be related to the currents \(I_{1}\) and \(I_{2}\) by the following equations:

$$V_{1} = j\omega L_{1} I_{1} + j\omega MI_{2}$$
(23a)
$$V_{2} = j\omega L_{2} I_{2} + j\omega MI_{1}$$
(23b)
$$V_{2} = - \frac{{I_{2} }}{{j\omega C_{2} }} - R_{2} I_{2}$$
(23c)

where \(M\) is the mutual inductance between the primary and secondary windings. From (23b) and (23c) we can write:

$$I_{2} = \frac{\omega M}{{\frac{1}{{\omega C_{2} }} - \omega L_{2} + jR_{2} }}I_{1} .$$
(24)
Fig. 18
figure 18

Transformer model used in the derivation of (9)

By substituting (24) into (23a), the effective impedance of the transformer can be written as:

$$\begin{aligned} Z_{eff} &= \frac{{V_{1} }}{{I_{1} }} = j\omega L_{1} + j\frac{{\left( {\omega M} \right)^{2} }}{{\frac{1}{{\omega C_{2} }} - \omega L_{2} + jR_{2} }} \\ &= j\omega L_{1} + j\frac{{\omega^{2} k^{2} L_{1} L_{2} }}{{\sqrt {\frac{{L_{2} }}{{C_{2} }}} \left( {\frac{1}{{\omega \sqrt {L_{2} C_{2} } }} - \omega \sqrt {L_{2} C_{2} } } \right) + jR_{2} }}\\ &= j\omega L_{1} + j\frac{{\omega^{2} k^{2} L_{1} \frac{1}{{\omega_{2} }}}}{{\left( {\frac{{\omega_{2} }}{\omega } - \frac{\omega }{{\omega_{2} }}} \right) + jR_{2} \sqrt {\frac{{C_{2} }}{{L_{2} }}} }}\\ &= j\omega L_{1} \left[ {1 + \frac{{k^{2} \frac{\omega }{{\omega_{2} }}}}{{\left( {\frac{{\omega_{2} }}{\omega } - \frac{\omega }{{\omega_{2} }}} \right) + jR_{2} \frac{1}{{\omega_{2} L_{2} }}}}} \right]\\ &= j\omega L_{1} \left[ {1 + \frac{{k^{2} \alpha }}{{\left( {\frac{1}{\alpha } - \alpha } \right) + j\frac{1}{{Q_{T} }}}}} \right]\\ &= j\omega L_{1} \left[ {1 + \frac{{k^{2} \left( {1 - \alpha^{2} } \right)}}{{\left( {\frac{1}{\alpha } - \alpha } \right)^{2} + \frac{1}{{Q_{T}^{2} }}}} - j\frac{{k^{2} \alpha /Q_{T} }}{{\left( {\frac{1}{\alpha } - \alpha } \right)^{2} + \frac{1}{{Q_{T}^{2} }}}}} \right]\\ &= \omega L_{1} \frac{{k^{2} \alpha /Q_{T} }}{{\left( {\frac{1}{\alpha } - \alpha } \right)^{2} + \frac{1}{{Q_{T}^{2} }}}} + j\omega L_{1} \left[ {1 + \frac{{k^{2} \left( {1 - \alpha^{2} } \right)}}{{\left( {\frac{1}{\alpha } - \alpha } \right)^{2} + \frac{1}{{Q_{T}^{2} }}}}} \right] \end{aligned}$$
(25)

where \(\alpha_{(L,H)} = \omega_{{\left( {L,H} \right)}} /\omega_{2}\), \(k\) is the coupling coefficient, and \(Q_{T} = \omega_{2} L_{2} /R_{2}\) is the quality factor of the secondary winding with \(\omega_{2} = 1/\sqrt {L_{2} C_{2} }\).

Finally, the harmonic impedance of the transformer-based load network is given in Eqs. (18a) and (18b) which express the magnitude of the 2nd-harmonic impedance and the 3rd-harmonic impedance, respectively, for both bands. The total impedance of transformer-based dual-band load network (Fig. 4) as a function of angular frequency (\(\omega\)) can be expressed as:

$$Z_{L} \left( \omega \right) = Z_{eff} + j\omega L_{S} + \frac{1}{{j\omega \left( {C_{o} + C_{S} } \right)}} + j\omega L_{P} ||\frac{1}{{j\omega C_{P} }}||50$$
(26)

which can be expanded to the form:

$$Z_{L} \left( \omega \right) = j\omega L_{1} \left( {1 + \frac{{k^{2} \alpha (\omega )}}{{\frac{1}{\alpha (\omega )} - \alpha (\omega )}}} \right) + \frac{{\omega L_{1} {\text{k}}^{2} }}{{\left( {\frac{1}{\alpha (\omega )} - \alpha (\omega )} \right)^{2} }}{ \cdot }\frac{\alpha (\omega )}{{Q_{TX,L\left( H \right)} }} + j\omega L_{S} + \frac{1}{{j\omega \left( {C_{o} + C_{S} } \right)}} + j\omega L_{P} ||\frac{1}{{j\omega C_{P} }}||50 .$$
(27)

which has the same form as (18a) and (18b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Z. & Neihart, N.M. Switchless compact dual-band matching networks for class-E power amplifiers. Analog Integr Circ Sig Process 88, 207–221 (2016). https://doi.org/10.1007/s10470-016-0726-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0726-0

Keywords

Navigation