Skip to main content
Log in

Complex Mode Spectra of Graphene-Based Planar Structures for THz Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this work, we analyze in detail the modal properties of a graphene-based planar waveguide (GPW) in the terahertz (THz) frequency range. The structure consists of a graphene sheet placed on the top of a grounded dielectric slab. As is known, the surface conductivity of the graphene sheet can easily be tuned with a bias voltage via electric-field effect; we show here how such a bias affects the propagation features of both TM and TE modes supported by the GPW. An extensive dispersion analysis is performed for complex modes in both guided and radiative (leaky) regimes, considering also dielectric and metal losses as well as nonlocal effects in graphene. In particular, we focus on the behavior of the fundamental leaky modes since they exhibit quite interesting radiation features for suitable values of the bias. These results are very promising for the development of reconfigurable leaky-wave Fabry-Perot cavity antennas based on graphene at THz frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183 (2007).

  2. P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50(3), 910 (2002).

  3. G. W. Hanson, J. Appl. Phys. 103(6), 064302 (2008).

  4. A. Vakil and N. Engheta, Science 332(6035), 1291 (2011).

  5. F. Schweirz, Nat. Nanotechnol. 5(7), 486 (2010).

  6. M. Dragoman, A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, J. Appl. Phys. 107(10), 104313 (2010).

  7. M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80(24), 245435 (2009).

  8. M. Tamagnone, J. S. Gómez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, J. Appl. Phys. 112(11), 114915 (2012).

  9. J. Perruisseau-Carrier, M. Tamagnone, J. S. Gómez-Diaz, M. Esquius-Morote, and J. R. Mosig, Proceedings of IEEE Antennas and Propagation Society International Symposium (AP-S/URSI), Orlando, pp. 136-137 (2013).

  10. R. Filter, M. Farhat, M. Steglich, R. Aalae, C. Rockstuhl, and F. Lederer, Optics Express 21(3), 3737 (2013).

  11. M. Esquius-Morote, J. S. Gómez-Diaz, and J. Perruisseau-Carrier, IEEE Trans. Terahertz Sci. Technol. 4(1), 116 (2014).

  12. X.-C. Wang, W.-S. Zhao, J. Hu, and W.-Y. Yin, IEEE Trans. Nanotechnol. 14(1), 62 (2015).

  13. T. Tamir and A. A. Oliner, Proc. Inst. Electr. Eng. 110(2), 310 (1963).

  14. A. A. Oliner and D. R. Jackson, in Antenna Engineering Handbook, ed. by J. L. Volakis (McGraw-Hill, New York, 2007), Ch. 11.

  15. Z. G. Liu, J. Infrared Millim. Terahertz Waves 31(4), 391 (2010).

  16. N. Marcuvitz, Waveguide Handbook, (McGraw-Hill, New York, 1951).

  17. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, (Englewood Cliffs, Prentice-Hall, 1973).

  18. R. Sorrentino, in Numerical Techniques for Microwave and Millimeter-wave Passive Structures, ed. by T. Itoh (Wiley, New York, 1989), Ch. 11.

  19. G. Valerio, D. R. Jackson, and A. Galli, IEEE Trans. Microw. Theory Tech. 58(7), 1786 (2010).

  20. G. Lovat, P. Burghignoli, and D. R. Jackson, IEEE Trans. Antennas Propag. 54(5), 1442 (2006).

  21. V. P. Gusynin, S. G. Sharapov, and J. B. Charbotte, New J. Phys. 11(9), 095013 (2009).

  22. G. W. Hanson, IEEE Trans. Antennas Propag. 56(3), 747 (2008).

  23. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, Phys. Rev. B 87(11), 115429 (2013).

  24. G. Lovat, P. Burghignoli, and R. Araneo, IEEE Trans. Electromagn. Compat. 55(2), 328 (2013).

  25. G. Valerio, D. R. Jackson, and A. Galli, Proc. Royal Soc. A 466(2120), 2447 (2010).

  26. V. Galdi and I. M. Pinto, Microw. and Opt. Tech. Lett. 24(2), 135 (2000).

  27. P. Lampariello, F. Frezza, and A. A. Oliner, IEEE Trans. Microw. Theory Tech. 38(12), 1831 (1990).

  28. C. Di Nallo, F. Frezza, A. Galli, P. Lampariello, and A. A. Oliner, IEEE Trans. Microw. Theory Tech. 42(12), 2429 (1994).

  29. S. A. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).

  30. M. Naftaly and R. E. Miles, IEEE Proc. 95(8), 1658 (2007).

  31. D. M. Pozar, Microwave Engineering (Wiley, 1997).

  32. N. Laman and D. Grischkowski, Appl. Phys. Lett. 93(5), 051105 (2008).

  33. T. Zhao, D. R. Jackson, J. T. Williams, and A. A. Oliner, IEEE Trans. Antennas Propag. 53(11), 3525 (2005).

  34. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, IEEE Trans. Microw. Theory Tech. 53(1), 32 (2005).

  35. G. Deokar, J. Avila, I. Razado-Colambo, J.-L. Codron, C. Boyaval, E. Galopin, M.-C. Asensio, and D. Vignaud, Carbon 89, 82 (2015).

  36. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., Science 324(5932), 1312 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Fuscaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuscaldo, W., Burghignoli, P., Baccarelli, P. et al. Complex Mode Spectra of Graphene-Based Planar Structures for THz Applications. J Infrared Milli Terahz Waves 36, 720–733 (2015). https://doi.org/10.1007/s10762-015-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0178-0

Keywords

Navigation