Skip to main content

Advertisement

Log in

Celecoxib Combined with Diacerein Effectively Alleviates Osteoarthritis in Rats via Regulating JNK and p38MAPK Signaling Pathways

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) has long been a difficult to overcome joint disease for medical workers. However, there is still a lack of effective treatments for OA. In the present study, we aimed to evaluate the treatment effect of celecoxib (CLX) combined with diacerein (DC) on OA and delineate the underlying molecular mechanism. The OA model was established by using rats, and OA rats were treated with either CLX alone, DC alone, and CLX combined with DC. The results showed that, as compared with a single treatment of CLX or DC, CLX combined with DC markedly attenuated OA and inhibited the levels of inflammatory mediators interleukin-1β and nitric oxide, improved bone cartilage metabolism, and suppressed chondrocyte apoptosis. Most importantly, CLX combined with DC significantly inactivated the c-Jun N-terminal kinases (JNK) signaling pathway by the inhibition of MEKK1 and MKK7, as detected by Western blot analysis. Furthermore, the protein expression of downstream genes of JNK, including activating-transcription factor (Atf-2), matrix metalloproteinase-13 (MMP-13), and cyclooxygenase (COX-2), were also significantly inhibited by CLX combined with DC as compared with single treatments. Furthermore, CLX combined with DC also effectively inhibits p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways. Taken together, our study suggests that CLX combined with DC has satisfactory treatment effects on OA via a stronger inhibitory effect on inflammatory signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

MMP-13:

Matrix metalloproteinase-13

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor α

CTX-II:

C-telopeptide fragments of type II collagen

MAPKs:

Mitogen-activated protein kinases

JNK:

c-Jun N-terminal kinases

Atf-2:

Activating-transcription factor

COX-2:

Cyclooxygenase

MAPK:

Mitogen-activated protein kinase

NSAID:

Non-steroidal anti-inflammatory drug

CLX:

Celecoxib

DC:

Diacerein

ELISA:

Enzyme-linked immune sorbent assay

BMD:

Bone mineral density

References

  1. Pelletier, J.-P., J. Martel-Pelletier, and J.-P. Raynauld. 2006. Most recent developments in strategies to reduce the progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Research & Therapy 8: 206.

    Article  Google Scholar 

  2. Berenbaum, F. 2004. Signaling transduction: target in osteoarthritis. Current Opinion in Rheumatology 16: 616–622.

    Article  PubMed  Google Scholar 

  3. Buckland-Wright, C. 2004. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis and Cartilage 12: 10–19.

    Article  Google Scholar 

  4. Tinti, L., S. Niccolini, A. Lamboglia, N.A. Pascarelli, R. Cervone, and A. Fioravanti. 2011. Raloxifene protects cultured human chondrocytes from IL-1β induced damage: a biochemical and morphological study. European Journal of Pharmacology 670: 67–73.

    Article  CAS  PubMed  Google Scholar 

  5. Qin J., L. Shang, A.S. Ping, J. Li, X.J. Li, H. Yu, J. Magdalou, L.B. Chen, H. Wang. 2012. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1beta-induced rat osteoarthritis chondrocytes in vitro. Arthritis Research and Therapy 14.

  6. Pacher, P., J.S. Beckman, and L. Liaudet. 2007. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews 87: 315–424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hashimoto, S., R.L. Ochs, S. Komiya, and M. Lotz. 1998. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis and Rheumatism 41: 1632–1638.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, S.J., J.W. Ju, C.D. Oh, Y.M. Yoon, W.K. Song, J.H. Kim, Y.J. Yoo, O.S. Bang, S.S. Kang, and J.S. Chun. 2002. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. Journal of Biological Chemistry 277: 1332–1339.

    Article  CAS  PubMed  Google Scholar 

  9. Chowdhury, T.T., D.M. Salter, D.L. Bader, and D.A. Lee. 2008. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflammation Research 57: 306–313.

    Article  CAS  PubMed  Google Scholar 

  10. Dhanasekaran, D.N., and E.P. Reddy. 2008. JNK signaling in apoptosis. Oncogene 27: 6245–6251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yoon, H.S., and H.A. Kim. 2004. Prologation of c-Jun N-terminal kinase is associated with cell death induced by tumor necrosis factor alpha in human chondrocytes. Journal of Korean Medical Science 19: 567–573.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sylvester, J., A. Liacini, W.Q. Li, and M. Zafarullah. 2004. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cellular Signalling 16: 469–476.

    Article  CAS  PubMed  Google Scholar 

  13. Mengshol, J.A., M.P. Vincenti, C.I. Coon, A. Barchowsky, and C.E. Brinckerhoff. 2000. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.

    Article  CAS  PubMed  Google Scholar 

  14. Kuhn, K., A.R. Shikhman, and M. Lotz. 2003. Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. Journal of Cellular Physiology 197: 379–387.

    Article  PubMed  Google Scholar 

  15. Masuko-Hongo, K., F. Berenbaum, L. Humbert, C. Salvat, M.B. Goldring, and S. Thirion. 2004. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. Arthritis and Rheumatism 50: 2829–2838.

    Article  CAS  PubMed  Google Scholar 

  16. Myers, L.K., A.H. Kang, A.E. Postlethwaite, E.F. Rosloniec, S.G. Morham, B.V. Shlopov, S. Goorha, and L.R. Ballou. 2000. The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis and Rheumatism 43: 2687–2693.

    Article  CAS  PubMed  Google Scholar 

  17. Zweers, M.C., T.N. de Boer, J. van Roon, J.W. Bijlsma, F.P. Lafeber, and S.C. Mastbergen. 2011. Celecoxib: considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Research & Therapy 13: 239.

    Article  CAS  Google Scholar 

  18. Dave, M., and A.R. Amin. 2013. Yin-Yang regulation of prostaglandins and nitric oxide by PGD2 in human arthritis: reversal by celecoxib. Immunology Letters 152: 47–54.

    Article  CAS  PubMed  Google Scholar 

  19. Ashkavand, Z., H. Malekinejad, A. Amniattalab, A. Rezaei-Golmisheh, and B. Vishwanath. 2012. Silymarin potentiates the anti-inflammatory effects of celecoxib on chemically induced osteoarthritis in rats. Phytomedicine 19: 1200–1205.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, J., D. Jiang, Z. Wang, G. Wu, L. Miao, and L. Huang. 2013. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. International Journal of Pharmaceutics 441: 285–290.

    Article  CAS  PubMed  Google Scholar 

  21. Martel-Pelletier, J., and J.P. Pelletier. 2010. Effects of diacerein at the molecular level in the osteoarthritis disease process. Therapeutic Advances Musculoskelet Disorders 2: 95–104.

    Article  CAS  Google Scholar 

  22. Fidelix T.S., C.R. Macedo, L.J. Maxwell, V. Fernandes Moca Trevisani. 2014. Diacerein for osteoarthritis. Cochrane Database of Systematic Reviews 10.

  23. Kikuchi, T., T. Sakuta, and T. Yamaguchi. 1998. Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthritis and Cartilage 6: 177–186.

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi, T., H. Yamada, and M. Shimmei. 1996. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthritis and Cartilage 4: 99–110.

    Article  CAS  PubMed  Google Scholar 

  25. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [< sup > 15</sup > N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.

    Article  CAS  PubMed  Google Scholar 

  26. Eyre, D.R., M.A. Weis, and J.J. Wu. 2006. Articular cartilage collagen: an irreplaceable framework? European Cells & Materials 12: 57–63.

    CAS  Google Scholar 

  27. Legendre, F., C. Bauge, R. Roche, A.S. Saurel, and J.P. Pujol. 2008. Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1beta-stimulated chondrocytes—study in hypoxic alginate bead cultures. Osteoarthritis and Cartilage 16: 105–114.

    Article  CAS  PubMed  Google Scholar 

  28. Malemud, C.J. 2004. Cytokines as therapeutic targets for osteoarthritis. BioDrugs 18: 23–35.

    Article  CAS  PubMed  Google Scholar 

  29. Han, Z., D.L. Boyle, L. Chang, B. Bennett, M. Karin, L. Yang, A.M. Manning, and G.S. Firestein. 2001. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. Journal of Clinical Investigation 108: 73–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Legendre, F., P. Bogdanowicz, G. Martin, F. Domagala, S. Leclercq, J.P. Pujol, and H. Ficheux. 2007. Rhein, a diacerhein-derived metabolite, modulates the expression of matrix degrading enzymes and the cell proliferation of articular chondrocytes by inhibiting ERK and JNK-AP-1 dependent pathways. Clinical and Experimental Rheumatology 25: 546–555.

    CAS  PubMed  Google Scholar 

  31. Martinez-Gonzalez, J., R. Rodriguez-Rodriguez, M. Gonzalez-Diez, C. Rodriguez, M.D. Herrera, V. Ruiz-Gutierrez, and L. Badimon. 2008. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. Journal of Nutrition 138: 443–448.

    CAS  PubMed  Google Scholar 

  32. Chen, T.H., C.F. Chang, S.C. Yu, J.C. Wang, C.H. Chen, P. Chan, and H.M. Lee. 2009. Dipyridamole inhibits cobalt chloride-induced osteopontin expression in NRK52E cells. European Journal of Pharmacology 613: 10–18.

    Article  CAS  PubMed  Google Scholar 

  33. Chun, K.S., S.H. Kim, Y.S. Song, and Y.J. Surh. 2004. Celecoxib inhibits phorbol ester-induced expression of COX-2 and activation of AP-1 and p38 MAP kinase in mouse skin. Carcinogenesis 25: 713–722.

    Article  CAS  PubMed  Google Scholar 

  34. Tsutsumi, R., H. Ito, T. Hiramitsu, K. Nishitani, M. Akiyoshi, T. Kitaori, T. Yasuda, and T. Nakamura. 2008. Celecoxib inhibits production of MMP and NO via down-regulation of NF-kappaB and JNK in a PGE2 independent manner in human articular chondrocytes. Rheumatology International 28: 727–736.

    Article  CAS  PubMed  Google Scholar 

  35. Annamanedi, M., and A.M. Kalle. 2014. Celecoxib sensitizes Staphylococcus aureus to antibiotics in macrophages by modulating SIRT1. PLoS One 9: e99285.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Domagala, F., G. Martin, P. Bogdanowicz, H. Ficheux, and J.P. Pujol. 2006. Inhibition of interleukin-1beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappaB and AP-1: potential mechanism for diacerein effects in osteoarthritis. Biorheology 43: 577–587.

    CAS  PubMed  Google Scholar 

  37. Boileau, C., S.K. Tat, J.P. Pelletier, S. Cheng, and J. Martel-Pelletier. 2008. Diacerein inhibits the synthesis of resorptive enzymes and reduces osteoclastic differentiation/survival in osteoarthritic subchondral bone: a possible mechanism for a protective effect against subchondral bone remodelling. Arthritis Research & Therapy 10: R71.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Meng, D., Li, G. et al. Celecoxib Combined with Diacerein Effectively Alleviates Osteoarthritis in Rats via Regulating JNK and p38MAPK Signaling Pathways. Inflammation 38, 1563–1572 (2015). https://doi.org/10.1007/s10753-015-0131-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0131-3

KEY WORDS

Navigation