Skip to main content
Log in

Nutrients and zooplankton as factors controlling phytoplankton growth in the Cheboksary Reservoir

  • BIODIVERSITY OF LARGE RIVERS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

This article has been updated

Abstract

We present a detailed study of spatial distribution of nutrient elements, phytoplankton and zooplankton in the Cheboksary Reservoir—a eutrophic artificial lake in Central Russia—during summer periods of 2017–2021 and review the relationships between these elements of the food chain to determine what shapes the trophic state of the lake. It is shown that vast differences in nutrient content of the reservoir’s tributaries cause its trophic state to change significantly in mouth areas of some larger inflowing rivers. However, in the largest part of the lake the relationship between nutrient content and chlorophyll becomes more subtle, whereas zooplankton community structure steps up as an important factor controlling the phytoplankton growth. It is clear that major efforts in nutrient loading reduction are needed to improve the ecological state of the reservoir, and nitrogen control may be more effective, than phosphorus control. However, described trophic interactions may reduce efficiency of nutrient control and require some biomanipulation measures to improve water quality of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 25 December 2023

    The footnote was missing three of the guest editors’ names

References

  • Ahoutou, M. K., E. K. Yao, R. Y. Djeha, M. Kone, K. Tambosco, C. Duval, S. Hamlaoui, C. Bernard, M. Bouvy, B. Marie, B. Montuelle, M. Troussellier, F. K. Konan, J. K. Coulibaly, M. Dosso, J.-F. Humbert & C. Quiblier, 2022. Impacts of nutrient loading and fish grazing on the phytoplankton community and cyanotoxin production in a shallow tropical lake: results from mesocosm experiments. MicrobiologyOpen 11: e1278. https://doi.org/10.1002/mbo3.1278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belykh, O. I., A. S. Gladkikh, E. G. Sorokovikova, I. V. Tikhonova, S. A. Potapov & G. A. Fedorova, 2013. Microcystin-producing cyanobacteria in water reservoirs of Russia, Belarus and Ukraine. Chemistry for Sustainable Development 21: 347–361.

    Google Scholar 

  • Berger, S. A., S. Diehl, H. Stibor, G. Trommer & M. Ruhenstroth, 2010. Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology 16: 1954–1965. https://doi.org/10.1111/j.1365-2486.2009.02134.x.

    Article  Google Scholar 

  • Bergström, A. K. & J. Karlsson, 2019. Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Global Change Biology 25: 2021–2029. https://doi.org/10.1111/gcb.14623.

    Article  PubMed  Google Scholar 

  • Błędzki, L. & J. I. Rybak, 2016. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer, Germany: 918 pp. https://doi.org/10.1007/978-3-319-29871-9.

  • Borcard, D., Gillet, F. & P. Legendre, 2011. Numerical Ecology with R. Springer, New York: 306 pp.

  • Bogard, M. J., R. J. Vogt, N. M. Hayes & P. R. Leavitt, 2020. Unabated nitrogen pollution favors growth of toxic cyanobacteria over chlorophytes in most hypereutrophic lakes. Environmental Science & Technology 54: 3219–3227. https://doi.org/10.1021/acs.est.9b06299.

    Article  CAS  Google Scholar 

  • Bouffard, D., I. Kiefer, A. Wüest, S. Wunderle & D. Odermatt, 2018. Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sensing of Environment 209: 510–523. https://doi.org/10.1016/j.rse.2018.02.056.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. The effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. Science 150: 28–35. https://doi.org/10.1126/science.150.3692.28.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. W., 1987. Insights into zooplankton–cyanobacteria interactions derived from enclosures studies. New Zealand Journal of Marine and Freshwater Research 21: 477–482. https://doi.org/10.1080/00288330.1987.9516243.

    Article  Google Scholar 

  • Carey, R. O., G. J. Hochmuth, C. J. Martinez, T. H. Boyer, M. D. Dukes, G. S. Toor & J. L. Cisar, 2013. Evaluating nutrient impacts in urban watersheds: challenges and research opportunities. Environmental Pollution 173: 138–149. https://doi.org/10.1016/j.envpol.2012.10.004.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369. https://doi.org/10.4319/lo.1977.22.2.0361.

    Article  CAS  Google Scholar 

  • Carlson, R. E., 1992. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. In Proceedings of a National Conference on Enhancing the States’ Lake Management Programs: 59–71.

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. S. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186. https://doi.org/10.1890/0012-9615(2001)071[0163:TCNALP]2.0.CO;2.

    Article  Google Scholar 

  • Carvalho, L., C. McDonald, C. de Hoyos, U. Mischke, G. Phillips, G. Borics, S. Poikane, B. Skjelbred, A. L. Solheim, J. Van Wichelen & A. C. Cardoso, 2013. Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control. Journal of Applied Ecology 50: 315–323. https://doi.org/10.1111/1365-2664.12059.

    Article  CAS  Google Scholar 

  • Chambers, P. A., D. J. McGoldrick, R. B. Brua, C. Vis, J. M. Culp & G. A. Benoy, 2012. Development of environmental thresholds for nitrogen and phosphorus in streams. Journal of Environmental Quality 41: 7–20. https://doi.org/10.2134/jeq2010.0273.

    Article  PubMed  CAS  Google Scholar 

  • Chernova, E., S. Sidelev, I. Russkikh, L. Korneva, V. Solovyova, N. Mineeva, I. Stepanova & Z. Zhakovskaya, 2020. Spatial distribution of cyanotoxins and ratios of microcystin to biomass indicators in the reservoirs of the Volga, Kama and Don Rivers, the European part of Russia. Limnologica 84: 125819–21. https://doi.org/10.1016/j.limno.2020.125819.

    Article  CAS  Google Scholar 

  • Chorus, I. & E. Spijkerman, 2021. What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control. Hydrobiologia 848: 95–111. https://doi.org/10.1007/s10750-020-04377-w.

    Article  CAS  Google Scholar 

  • Dodds, W. K. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196. https://doi.org/10.2307/1468291.

    Article  Google Scholar 

  • Elser, J. J. & C. R. Goldman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography 36: 64–90. https://doi.org/10.4319/lo.1991.36.1.0064.

    Article  Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477. https://doi.org/10.1139/f90-165.

    Article  CAS  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x.

    Article  PubMed  Google Scholar 

  • Ermakov, S. A., A. A. Molkov, I. A. Kapustin, T. N. Lazareva, O. A. Danilicheva, O. V. Shomina, M. V. Smirnova & O. Y. Lavrova, 2019. Satellite and in-situ observations of a river confluence zone. Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2019(11150): 384–390. https://doi.org/10.1117/12.2533470.

    Article  Google Scholar 

  • Gebrehiwot, M., D. Kifle & L. Triest, 2020. Partitioning the influence of hydrodynamics-induced physical variables and nutrients on phytoplankton assemblages in a shallow tropical reservoir (Koka, Ethiopia). Limnology 21: 269–274. https://doi.org/10.1007/s10201-020-00611-5.

    Article  CAS  Google Scholar 

  • Ger, K. A., P. Urrutia-Cordero, P. C. Frost, L.-A. Hansson, O. Sarnelle, A. E. Wilson & M. Lürling, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144. https://doi.org/10.1016/j.hal.2015.12.005.

    Article  PubMed  Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200: 83–97. https://doi.org/10.1007/BF02530331.

    Article  Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702. https://doi.org/10.2307/1940323.

    Article  Google Scholar 

  • Graham, J. L., J. R. Jones, S. B. Jones, J. A. Downing & T. E. Clevenger, 2004. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Research 38: 4395–4404. https://doi.org/10.1016/j.watres.2004.08.004.

    Article  PubMed  CAS  Google Scholar 

  • Granlund, K., A. Räike, P. Ekholm, K. Rankinen & S. Rekolainen, 2005. Assessment of water protection targets for agricultural nutrient loading in Finland. Journal of Hydrology 304: 251–260. https://doi.org/10.1016/j.jhydrol.2004.07.033.

    Article  CAS  Google Scholar 

  • Gulati, R. D., 1990. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures. Hydrobiologia 191: 173–188. https://doi.org/10.1007/978-94-009-0467-5_20.

    Article  CAS  Google Scholar 

  • Gulati, R. D., M. Bronkhorst & E. Van Donk, 2001. Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. Journal of Plankton Research 23: 705–718. https://doi.org/10.1093/plankt/23.7.705.

    Article  Google Scholar 

  • Gustafsson, S. & L. A. Hansson, 2004. Development of tolerance against toxic cyanobacteria in Daphnia. Aquatic Ecology 38: 37–44. https://doi.org/10.1023/B:AECO.0000020985.47348.5e.

    Article  Google Scholar 

  • Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 467–475. https://doi.org/10.1080/00288330.1987.9516242.

    Article  Google Scholar 

  • Huang, J., Y. Zhang, G. B. Arhonditsis, J. Gao, Q. Chen, N. Wu, F. Dong & W. Shi, 2019. How successful are the restoration efforts of China’s lakes and reservoirs? Environment International 123: 96–103. https://doi.org/10.1016/j.envint.2018.11.048.

    Article  PubMed  CAS  Google Scholar 

  • Hudec, I., 2010. Anomopoda, Ctenopoda, Haplopoda, Onychopoda (Crustacea: Branchiopoda). Fauna Slovenska III. VEDA, Bratislava, Slovakia: 496 pp.

  • Jeppesen, E., M. Soendergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil & B. Foy, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x.

    Article  CAS  Google Scholar 

  • Kapustin, I. A., A. A. Molkov, S. A. Ermakov & M. V. Smirnova, 2019. General characteristic and features of the current structure in the Cheboksary Reservoir from Nizhny Novgorod to Kozmodemyansk. In Proceedings of the 4th All-Russian Scientific Conference “Problems of the ecology of the Volga basin” (“Volga 2019”) (in Russian)

  • Kasprzak, P., J. Benndorf, T. Gonsiorczyk, R. Koschel, L. Krienitz, T. Mehner, S. Hülsmann, H. Schultz & A. Wagner, 2007. Reduction of nutrient loading and biomanipulation as tools in water quality management: Long-term observations on Bautzen Reservoir and Feldberger Haussee (Germany). Lake and Reservoir Management 23: 410–427. https://doi.org/10.1080/07438140709354027.

    Article  Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1992. Variation in herbivore response to chemical defences – zooplankton foraging on toxic cyanobacteria. Ecology 73: 2208–2217. https://doi.org/10.2307/1941468.

    Article  Google Scholar 

  • Korovchinsky, N. M., A. A. Kotov, A. Yu. Sinev, A. N. Neretina & P. G. Garibyan, 2021. Branchy-Billed Crustaceans (Crustacea: Cladocera) of Northern Eurasia. Vol. II. Association of Scientific Editions KMK, Moscow: 544 pp. (in Russian)

  • Kozhara, V. L., 1997. Cartographic classification using large sets of variables. Mapping Sciences and Remote Sensing 34: 247–263. https://doi.org/10.1080/07493878.1997.10642066.

    Article  Google Scholar 

  • Kronvang, B., M. Bechmann, H. Lundekvam, H. Behrendt, G. H. Rubaek, O. F. Schoumans, N. Syversen, H. E. Andersen & C. C. Hoffmann, 2005. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures. Journal of Environmental Quality 34: 2129–2144. https://doi.org/10.2134/jeq2004.0439.

    Article  PubMed  CAS  Google Scholar 

  • Kulizin, P., E. Vodeneeva & A. Okhapkin, 2020. The experience of using the functional classification of phytoplankton to assess the water quality of some left-bank tributaries of the Volga River (basin of the Cheboksary Reservoir). Principy ekologii 9: 3−15. https://doi.org/10.15393/j1.art.2020.9582 (in Russian)

  • Lammens, E. H. R. R., N. Boesewinkel-De Bruyn, H. Hoogveld & E. Van Donk, 1992. P-Load, phytoplankton, zooplankton and fish stock in Loosdrecht Lake and Tjeukemeer – confounding effects of predation and food availability. Hydrobiologia 233: 87–94. https://doi.org/10.1007/BF00016098.

    Article  Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton–cyanobacteria Interactions. New Zealand Journal of Marine and Freshwater Research 21: 483–490. https://doi.org/10.1080/00288330.1987.9516244.

    Article  Google Scholar 

  • Lazareva, V. I., N. M. Mineeva & S. M. Zhdanova, 2014. Spatial distribution of plankton from the Upper and Middle Volga reservoirs in years with different thermal conditions. Biology Bulletin 41: 869–878. https://doi.org/10.1134/S1062359014100070.

    Article  Google Scholar 

  • Lee, H. W., Y. S. Lee, J. Kim, K. J. Lim & J. H. Choi, 2019. Contribution of internal nutrients loading on the water quality of a reservoir. Water 11: 1409. https://doi.org/10.3390/w11071409.

    Article  CAS  Google Scholar 

  • Liu, X., B. G. Liu, Y. W. Chen, & J. F. Gao, 2016. Responses of nutrients and chlorophyll a to water level fluctuations in Poyang Lake. Huan Jing ke Xue = Huanjing Kexue 37: 2141–2148. https://doi.org/10.13227/j.hjkx.2016.06.017.

  • Low, E. W., E. Clew, P. A. Todd, Y. C. Tai & P. K. L. Ng, 2010. Top-down control of phytoplankton by zooplankton in tropical reservoirs in Singapore? The Raffles Bulletin of Zoology 52: 311–322. https://doi.org/10.5281/zenodo.5342886.

    Article  Google Scholar 

  • Maberly, S. C., J. A. Pitt, P. S. Davies & L. Carvalho, 2020. Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 10: 159–172. https://doi.org/10.1080/20442041.2020.1714384.

    Article  Google Scholar 

  • McQueen, D. J., M. R. Johannes, J. R. Post, T. J. Stewart & D. R. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs 59: 289–309. https://doi.org/10.2307/1942603.

    Article  Google Scholar 

  • Mineeva, N., 2022. Chlorophyll and its role in freshwater ecosystem on the example of the Volga River reservoirs. In: Chlorophylls. IntechOpen, London. https://doi.org/10.5772/intechopen.105424.

  • Mineeva, N. M., A. S. Litvinov, I. E. Stepanova & M. Y. Kochetkova, 2008. Chlorophyll content and factors affecting its spatial distribution in the Middle Volga reservoirs. Inland Water Biology 1: 64–72. https://doi.org/10.1007/s12212-008-1010-5.

    Article  Google Scholar 

  • Monakov A.V., 2003. Feeding of Freshwater Zooplankton Invertebrates. Kenobi Productions, Ghent, Belgium: 373 pp.

  • Na, E. H. & S. S. Park, 2006. A hydrodynamic and water quality modeling study of spatial and temporal patterns of phytoplankton growth in a stratified lake with buoyant incoming flow. Ecological Modelling 199: 298–314. https://doi.org/10.1016/j.ecolmodel.2006.05.008.

    Article  Google Scholar 

  • Namsaraev, Z., A. Melnikova, A. Komova, V. Ivanov, A. Rudenko & E. Ivanov, 2020. Algal bloom occurrence and effects in Russia. Water 12: 285. https://doi.org/10.3390/w12010285.

    Article  Google Scholar 

  • Nemirovskaya, I. A., 2012. Variations in different compounds in Volga water, suspension, and bottom sediments in the summer of 2009. Water Resources 39: 533–545. https://doi.org/10.1134/S0097807812030062.

    Article  CAS  Google Scholar 

  • Nikanorov, A. M. & T. A. Khoruzhaya, 2014. Intra-waterbody processes in large reservoirs of southern Russia (pollution, eutrophication, toxification). Geography and Natural Resources 35: 135–142. https://doi.org/10.1134/S1875372814020048.

    Article  Google Scholar 

  • Olokotum, M., Mitroi, V., Troussellier, M., Semyalo, R., Bernard, C., Montuelle, B., Okello, W., Quiblier, C., & J.-F. Humbert, 2020. A review of the socioecological causes and consequences of cyanobacterial blooms in Lake Victoria. Harmful Algae 96: 101829. https://doi.org/10.1016/j.hal.2020.101829.

  • Ovaskainen, O., B. Weigel, O. Potyutko & Y. Buyvolov, 2019. Long-term shifts in water quality show scale-dependent bioindicator responses across Russia-Insights from 40 year-long bioindicator monitoring program. Ecological Indicators 98: 476–482. https://doi.org/10.1016/j.ecolind.2018.11.027.

    Article  CAS  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2009. Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634: 125–135. https://doi.org/10.1007/s10750-009-9888-4.

  • Poikane, S., M. G. Kelly, F. S. Herrero, J. A. Pitt, H. P. Jarvie, U. Claussen, W. Leujak, A. L. Solheim, H. Teixeira & G. Phillips, 2019. Nutrient criteria for surface waters under the European Water Framework Directive: current state-of-the-art, challenges and future outlook. Science of the Total Environment 695: 133888. https://doi.org/10.1016/j.scitotenv.2019.133888.

    Article  PubMed  CAS  Google Scholar 

  • Poikane, S., M. G. Kelly, G. Várbíró, G. Borics, T. Erős, S. Hellsten, A. Kolada, B. A. Lukács, A. Lyche Solheim, J. P. López, N. J. Willby, G. Wolfram & G. Phillips, 2022. Estimating nutrient thresholds for eutrophication management: novel insights from understudied lake types. Science of the Total Environment 827: 154242. https://doi.org/10.1016/j.scitotenv.2022.154242.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R., A. Filazzola, O. Mahdiyan, A. Shuvo, K. Blagrave, C. Ewins, L. Moslenko, D. K. Gray, C. M. O’Reilly & S. Sharma, 2021. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography 66: 392–404. https://doi.org/10.1002/lno.11611.

    Article  CAS  Google Scholar 

  • Repka, S., 1998. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. II. Daphnia cucullata feeding on mixed diets. Freshwater Biology 38: 685–695. https://doi.org/10.1046/j.1365-2427.1997.00243.x.

    Article  Google Scholar 

  • Rogers, D. C. & J. H. Thorp (eds.), 2019. Keys to Palaearctic Fauna. Thorp and Covich’s Freshwater. Invertebrates, Vol. IV: 4th edition. Academic Press, Oxford: 920 pp.

  • Rose, V., G. Rollwagen-Bollens, S. M. Bollens & J. Zimmerman, 2021. Effects of grazing and nutrients on phytoplankton blooms and microplankton assemblage structure in four temperate lakes spanning a eutrophication gradient. Water 13: 1085. https://doi.org/10.3390/w13081085.

    Article  CAS  Google Scholar 

  • Rozenberg, G. S., A. V. Vasilyev, A. G. Zibarev, G. E. Kudinova, V. I. Popchenko, A. G. Rozenberg, M. V. Rubanova, S. V. Saksonov & G. R. Hasaev, 2017. From “Revival of the Volga” to the “Improvement of the Volga”: comparing the target Federal Programs Passports. In Proceedings of the Sixth International Environmental Congress (Eighth International Scientific-Technical Conference) “Ecology and Life Protection of Industrial-Transport Complexes” ELPIT 2017: 248–259.

  • Rumyantsev, V. A., A. V. Izmailova, V. G. Drabkova & S. A. Kondrat’ev, 2018. The current status and problems of the lake fund of European Russia. Herald of the Russian Academy of Sciences 88: 230–240. https://doi.org/10.1134/S1019331618030140.

    Article  Google Scholar 

  • Selge, F., E. Matta, R. Hinkelmann & G. Gunkel, 2016. Nutrient load concept-reservoir vs. bay impacts: a case study from a semi-arid watershed. Water Science & Technology 74: 1671–1679. https://doi.org/10.2166/wst.2016.342.

    Article  CAS  Google Scholar 

  • Venitsianov, E. V., 2019. Modern problems of water protection in Russia. IOP Conference Series: Earth and Environmental Science 321: 012033. https://doi.org/10.1088/1755-1315/321/1/012033.

    Article  Google Scholar 

  • Vodeneyeva, Y. L., K. Y. Kolomina, Y. M. Sharagina, P. V. Kulizin & A. G. Okhapkin, 2020. Water quality assessment of some right-bank tributaries of the Volga River (the Cheboksary Reservoir catchment) using phytoplankton functional classification. Hydrobiological Journal 56: 50–62. https://doi.org/10.1615/HydrobJ.v56.i2.50.

    Article  Google Scholar 

  • Xie, P. & J. Liu, 2001. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World 1: 337–356. https://doi.org/10.1100/tsw.2001.67.

    Article  CAS  Google Scholar 

  • Xie, L. & P. Xie, 2002. Long-term (1956–1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Research 36: 343–349. https://doi.org/10.1016/S0043-1354(01)00198-1.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., H. W. Paerl, B. Qin, G. Zhu & G. Gao, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55: 420–432. https://doi.org/10.4319/lo.2010.55.1.0420.

    Article  CAS  Google Scholar 

  • Xu, H., H. W. Paerl, B. Qin, G. Zhu, N. S. Hall & Y. Wu, 2015. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental Science & Technology 49: 1051–1059. https://doi.org/10.1021/es503744q.

    Article  CAS  Google Scholar 

  • Yasinskii, S. V., E. A. Kashutina, M. V. Sidorova & A. N. Narykov, 2020. Anthropogenic load and the effect of drainage area on the diffuse runoff of nutrients into a large water body: case study of the Cheboksary reservoir. Water Resources 47: 810–827. https://doi.org/10.1134/S009780782005022X.

    Article  CAS  Google Scholar 

  • Zeng, Q., L. Qin, L. Bao, Y. Li & X. Li, 2016. Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environmental Science and Pollution Research 23: 21008–21019. https://doi.org/10.1007/s11356-016-7321-x.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Most of the fieldwork for this study was supported by the Russian Geographical Society («The Floating University of the Volga Basin», project no. 02/2019-P, 07/2020-p, 17/2021-P). Research of plankton communities of the reservoir and its tributaries was supported by the federal academic leadership program «Priority 2030» of the Ministry of Science and Higher Education of the Russian Federation (subject-matter H-477-99_2021-2023). Studies of nutrient limitation were performed as a part of the State Assignment no. 121051400038-1 of the LMSU Department of Hydrology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MT, OE, VZ, EV, DS and DG. GS conceptualized and supervised the study and provided funding acquisition. The first draft of the manuscript was written by MT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Tereshina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Helmut Habersack, Marcel Liedermann, Martin Schletterer, Markus Eder & Michael Tritthart / Biodiversity and Bioindication in Large Rivers

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshina, M., Erina, O., Zhikharev, V. et al. Nutrients and zooplankton as factors controlling phytoplankton growth in the Cheboksary Reservoir. Hydrobiologia (2023). https://doi.org/10.1007/s10750-023-05367-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-023-05367-4

Keywords

Navigation