Skip to main content

Advertisement

Log in

Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Knowledge of benthic macroinvertebrate β-diversity patterns and drivers in an agricultural landscape can inform and improve watershed management decisions. Our study used multi-site and pairwise measures to determine taxonomic and functional β-diversity and associated nestedness and turnover components for benthic macroinvertebrate communities in the agricultural landscape. Total taxonomic β-diversity was mostly due to turnover, whereas total functional β-diversity was composed of turnover and nestedness more equally. Variation partitioning showed that spatial and habitat variables explained the largest proportion of variation in the total and turnover component of both taxonomic and functional β-diversity. Variation in nestedness was associated with local-scale habitat. Agricultural land cover was not a driver of β-diversity; however, extensive agricultural land cover appeared to disrupt the habitat–functional β-diversity relationship. Our findings suggest that distance among benthic macroinvertebrate communities should be considered when making land management or conservation decisions. Moreover, apparent disruption of the habitat–functional β-diversity relationship with extensive agricultural cover suggests managers should strategically target restoration activities to upland or channel areas based on catchment conditions. Finally, differences between taxonomic and functional β-diversity suggest including both measures in monitoring programs may enhance regional biodiversity assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, J. D., 2004a. Influence of land use and landscape setting on the ecological status of rivers. Limnetica 23: 187–198.

    Google Scholar 

  • Allan, J. D., 2004b. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.

    Article  PubMed  Google Scholar 

  • Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4: 2693–2702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. US Environmental Protection Agency, Office of Water, Washington, DC.

    Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: species replacement and nestedness. Global Ecology and Biogeography 21: 1223–1232.

    Article  Google Scholar 

  • Baselga, A., D. Orme, S. Villeger, J. D. Bortoli & F. Leprieur, 2018. betapart: partitioning beta diversity into turnover and nestedness components [available on internet at https://CRAN.R-project.org/package=betapart]. Accessed August 2018.

  • Bivand, R. S., E. Pebesma & V. Gomez-Rubio, 2013. Applied Spatial Data Analysis with R, 2nd edn. Springer, New York [available on internet at http://www.asdar-book.org/]. Accessed March 2019.

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Bourassa, N. & A. Morin, 1995. Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. Journal of the North American Benthological Society 14: 393–403.

    Article  Google Scholar 

  • Bowman, M. F. & R. C. Bailey, 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Canadian Journal of Fisheries and Aquatic Sciences 54: 9.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Brown, B. L., C. M. Swan, D. A. Auerbach, E. H. Campbell Grant, N. P. Hitt, K. O. Maloney & C. Patrick, 2011. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society 30: 310–327.

    Article  Google Scholar 

  • Buendia, C., C. N. Gibbins, D. Vericat, R. J. Batalla & A. Douglas, 2013. Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecological Indicators 25: 184–196.

    Article  Google Scholar 

  • Cadotte, M. W., 2006. Dispersal and species diversity: a meta-analysis. The American Naturalist 167: 913–924.

    Article  Google Scholar 

  • Carrara, F., F. Altermatt, I. Rodriguez-Iturbe & A. Rinaldo, 2012. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of USA 109: 5761–5766.

    Article  Google Scholar 

  • Cook, S. C., L. Housley, J. A. Back & R. S. King, 2018. Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology 99: 47–56.

    Article  PubMed  Google Scholar 

  • Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.

    Article  PubMed  Google Scholar 

  • De Bello, F., W. Thuiller, J. Lepš, P. Choler, J.-C. Clément, P. Macek, M.-T. Sebastià & S. Lavorel, 2009. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science 20: 475–486.

    Article  Google Scholar 

  • de Braghin, L. S. M., B. A. Almeida, D. C. Amaral, T. F. Canella, B. C. G. Gimenez & C. C. Bonecker, 2018. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshwater Biology 63: 721–730.

    Article  Google Scholar 

  • Dolédec, S., J. M. Olivier & B. Statzner, 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv für Hydrobiologie 148: 25–43.

    Article  Google Scholar 

  • Donohue, I., A. L. Jackson, M. T. Pusch & K. Irvine, 2009. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology 90: 3470–3477.

    Article  PubMed  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • ESRI, 2013. ArcGIS Version 10. Environment Systems Research Institute, Inc., Redlands.

    Google Scholar 

  • Finn, D. S. & N. L. Poff, 2011. Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. Journal of the North American Benthological Society 30: 273–283.

    Article  Google Scholar 

  • Floury, M., P. Usseglio-Polatera, C. Delattre & Y. Souchon, 2017. Assessing long-term effects of multiple, potentially confounded drivers in ecosystems from species traits. Global Change Biology 23: 2297–2307.

    Article  PubMed  Google Scholar 

  • Fugère, V., A. Kasangaki & L. J. Chapman, 2016. Land use changes in an afrotropical biodiversity hotspot affect stream alpha and beta diversity. Ecosphere 7: e01355.

    Article  Google Scholar 

  • Gayraud, S., B. Statzner, P. Bady, A. Haybachp, F. Schöll, P. Usseglio-Polatera & M. Bacchi, 2003. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.

    Article  Google Scholar 

  • Godoy, B. S., L. L. Queiroz, S. Lodi & L. G. Oliveira, 2017. Environment and spatial influences on aquatic insect communities in Cerrado streams: the relative importance of conductivity, altitude, and conservation areas. Neotropical Entomology 46: 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Government of Canada EC, 2012. Canadian Aquatic Biomonitoring Network: Wadeable Streams Field Manual [available on internet at http://publications.gc.ca/site/eng/9.696248/marcXml.html?MODS=1]. Accessed August 2018.

  • Grimstead, J. P., E. M. Krynak & A. G. Yates, 2018. Scale-specific land cover thresholds for conservation of stream invertebrate communities in agricultural landscapes. Landscape Ecology 33: 2239–2252.

    Article  Google Scholar 

  • Gutiérrez-Cánovas, C., A. Millán, J. Velasco, I. P. Vaughan & S. J. Ormerod, 2013. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography 22: 796–805.

    Article  Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences of USA 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., M. L. Murphy & N. H. Anderson, 1982. Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in Cascade Range streams of Oregon. Ecology 63: 1840–1856.

    Article  Google Scholar 

  • Hawkins, C. P., H. Mykrä, J. Oksanen & J. J. Vander Laan, 2015. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography 24: 483–494.

    Article  Google Scholar 

  • Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Article  Google Scholar 

  • Heino, J. & K. T. Tolonen, 2017. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnology and Oceanography 62: 2431–2444.

    Article  Google Scholar 

  • Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 5: 1539–1555.

    Article  Google Scholar 

  • Heino, J., A. S. Melo & L. M. Bini, 2015a. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, L. M. Bini, F. Altermatt, S. A. Al-Shami, D. G. Angeler, N. Bonada, C. Brand, M. Callisto, K. Cottenie, O. Dangles, D. Dudgeon, A. Encalada, E. Göthe, M. Grönroos, N. Hamada, D. Jacobsen, V. L. Landeiro, R. Ligeiro, R. T. Martins, M. L. Miserendino, C. S. M. Rawi, M. E. Rodrigues, F. O. de Roque, L. Sandin, D. Schmera, L. F. Sgarbi, J. P. Simaika, T. Siqueira, R. M. Thompson & C. R. Townsend, 2015b. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution 5: 1235–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015c. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen & R. Virtanen, 2017. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183: 121–137.

    Article  PubMed  Google Scholar 

  • Hill, M. J., R. P. Chadd, N. Morris, J. D. Swaine & P. J. Wood, 2016. Aquatic macroinvertebrate biodiversity associated with artificial agricultural drainage ditches. Hydrobiologia 776: 249–260.

    Article  Google Scholar 

  • Ishiyama, N., M. Sueyoshi, N. Watanabe & F. Nakamura, 2016. Biodiversity and rarity distributions of native freshwater fish in an agricultural landscape: the importance of β diversity between and within water-body types. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 416–428.

    Article  Google Scholar 

  • Johnson, R. K. & D. G. Angeler, 2014. Effects of agricultural land use on stream assemblages: taxon-specific responses of alpha and beta diversity. Ecological Indicators 45: 386–393.

    Article  CAS  Google Scholar 

  • Johnson, L., C. Richards, G. Host & J. Arthur, 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208.

    Article  CAS  Google Scholar 

  • Krynak, E. M. & A. G. Yates, 2018. Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: implications for indicator identification. Ecological Indicators 93: 1050–1059.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  Google Scholar 

  • Larsen, S. & S. J. Ormerod, 2014. Anthropogenic modification disrupts species co-occurrence in stream invertebrates. Global Change Biology 20: 51–60.

    Article  PubMed  Google Scholar 

  • Larsen, S., G. Pace & S. J. Ormerod, 2011. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications 27: 257–267.

    Article  Google Scholar 

  • Lenat, D. R. & V. H. Resh, 2001. Taxonomy and stream ecology: the benefits of genus- and species-level identifications. Journal of the North American Benthological Society 20: 287–298.

    Article  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804.

    Article  CAS  Google Scholar 

  • Maasri, A., B. Hayford, B. Erdenee & J. Gelhaus, 2018. Macroscale drivers influencing the structural and functional organization of stream macroinvertebrate metacommunities: potential role of hydrological connectivity. Freshwater Science 37: 159–168.

    Article  Google Scholar 

  • Maceda-Veiga, A., A. Baselga, R. Sousa, M. Vilà, I. Doadrio & A. de Sostoa, 2017. Fine-scale determinants of conservation value of river reaches in a hotspot of native and non-native species diversity. Science of the Total Environment 574: 455–466.

    Article  CAS  PubMed  Google Scholar 

  • Maloney, K. O., J. W. Feminella, R. M. Mitchell, S. A. Miller, P. J. Mulholland & J. N. Houser, 2008. Landuse legacies and small streams: identifying relationships between historical land use and contemporary stream conditions. Journal of the North American Benthological Society 27: 280–294.

    Article  Google Scholar 

  • Mouillot, D., S. Spatharis, S. Reizopoulou, T. Laugier, L. Sabetta, A. Basset & T. Do Chi, 2006. Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 469–482.

    Article  Google Scholar 

  • Mouquet, N. & M. Loreau, 2003. Community patterns in source–sink metacommunities. The American Naturalist 162: 544–557.

    Article  PubMed  Google Scholar 

  • Nekola, J. C. & P. S. White, 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26: 867–878.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: community ecology package [available on internet at https://CRAN.R-project.org/package=vegan]. Accessed March 2019.

  • Ontario Ministry of Natural Resources, 2008. Southern Ontario Land Resource Information System (SOLRIS) Land Use Data. Ontario Ministry of Natural Resources, Toronto.

    Google Scholar 

  • Pebesma, E. J. & R. S. Bivand, 2005. Classes and methods for spatial data in R. R News 5: 9–13 [available on internet at https://cran.r-project.org/doc/Rnews/]. Accessed August 2019.

  • Perez Rocha, M., L. M. Bini, S. Domisch, K. T. Tolonen, J. Jyrkänkallio-Mikkola, J. Soininen, J. Hjort & J. Heino, 2018. Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. Journal of Biogeography 45: 2744–2754.

    Article  Google Scholar 

  • Phillips, R. T. J. & J. R. Desloges, 2014. Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes. Geomorphology 206: 271–287.

    Article  Google Scholar 

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rolls, R. J., J. Heino, D. S. Ryder, B. C. Chessman, I. O. Growns, R. M. Thompson & K. B. Gido, 2018. Scaling biodiversity responses to hydrological regimes: hydrology, freshwater biodiversity and scale. Biological Reviews 93: 971–995.

    Article  PubMed  Google Scholar 

  • Simião-Ferreira, J., D. S. Nogueira, A. C. Santos, P. De Marco & R. Angelini, 2018. Multi-scale homogenization of caddisfly metacommunities in human-modified landscapes. Environmental Management 61: 687–699.

    Article  PubMed  Google Scholar 

  • Soininen, J., J. Heino & J. Wang, 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27: 96–109.

    Article  Google Scholar 

  • Su, G., J. Xu, M. Akasaka, J. G. Molinos & S. S. Matsuzaki, 2015. Human impacts on functional and taxonomic homogenization of plateau fish assemblages in Yunnan, China. Global Ecology and Conservation 4: 470–478.

    Article  Google Scholar 

  • Thompson, R. & C. Townsend, 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476–484.

    Article  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency, 2015. North American Ecoregions – Level I.

  • U.S. Environmental Protection Agency, EPA, 2012. Freshwater Traits Database (Final Report). U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Utz, R. M., R. H. Hilderbrand & D. M. Boward, 2009. Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators 9: 556–567.

    Article  Google Scholar 

  • Vidon, P. G. & A. R. Hill, 2006. A landscape-based approach to estimate riparian hydrological and nitrate removal functions. Journal of the American Water Resources Association 42: 1099–1112.

    Article  CAS  Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  Google Scholar 

  • Villéger, S., G. Grenouillet & S. Brosse, 2013. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography 22: 671–681.

    Article  Google Scholar 

  • Waite, I., 2014. Agricultural disturbance response models for invertebrate and algal metrics from streams at two spatial scales within the U.S. Hydrobiologia 726: 285–303.

    Article  CAS  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338.

    Article  Google Scholar 

  • Worthen, W. B., 1996. Community composition and nested-subset analyses: basic descriptors for community ecology. Oikos 76: 417–426.

    Article  Google Scholar 

  • Yates, A. G. & R. C. Bailey, 2006. The stream and its altered valley: integrating landscape ecology into environmental assessments of agro-ecosystems. Environmental Monitoring and Assessment 114: 257–271.

    Article  PubMed  Google Scholar 

  • Yates, A. G. & R. C. Bailey, 2010. Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia 637: 87–100.

    Article  Google Scholar 

  • Yates, A. G. & R. C. Bailey, 2011. Effects of taxonomic group, spatial scale and descriptor on the relationship between human activity and stream biota. Ecological Indicators 11: 759–771.

    Article  Google Scholar 

  • Zbinden, Z. D. & W. J. Matthews, 2017. Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshwater Biology 62: 1460–1471.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants provided to AG Yates from the Canadian Water Network (4000) and the Natural Sciences and Engineering Research Council of Canada (RGPIN/435371-2013). Additional support was supplied by the Ontario Trillium Foundation, and Western University. We would like to thank the members of the StrEAMS Lab for laboratory and field assistance, especially Roger Holmes, Jeremy Grimstead, Erika Hill, Renee Lazor, Nolan Pearce, Pablo Enrique Banuelos, and Ben Wilcox.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward M. Krynak or Adam G. Yates.

Additional information

Handling Editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Supplementary material 2 (DOCX 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krynak, E.M., Lindo, Z. & Yates, A.G. Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia 837, 61–75 (2019). https://doi.org/10.1007/s10750-019-3961-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3961-4

Keywords

Navigation