Skip to main content

Advertisement

Log in

Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Analysis of a long-term (1994–2014) data set of phytoplankton and zooplankton in the deep, dimictic, oligo-mesotrophic Lake Stechlin (Germany) revealed trend-like changes: phytoplankton biomass and resource use efficiency increased with proliferation of heterocytic cyanobacteria (Dolichospermum spp. and Aphanizomenon flos-aquae), and those of especially large-sized zooplankton (Eudiaptomus, Eurytemora) decreased. These reverse trends are clear eutrophication symptoms and suggest a long-term trophic decoupling with potential decrease in energy transport towards higher tropic levels. Total phosphorus increased significantly over time; however, there is no known external P load for Lake Stechlin. Causality analysis enabled us to identify the primary reason of the observed changes. According to the results, stronger and longer-lasting stratification (measured as relative water column stability) drove the observed changes and the gradual regime shift was initiated by an extreme weather event—both indicating that climate change has been the crucial driver of the planktic community in this lake. Our study also documents that there might be decadal delays between cause and consequences in aquatic food webs, supporting the essential importance of long-term monitoring efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abonyi, A., É. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472.

    Article  Google Scholar 

  • Bednarska, A. & M. Ślusarczyk, 2013. Effect of non-toxic, filamentous cyanobacteria on egg abortion in Daphnia under various thermal conditions. Hydrobiologia 715: 151–157.

    Article  CAS  Google Scholar 

  • Benincà, E., J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer & S. P. Ellner, 2008. Chaos in a long-term experiment with a plankton community. Nature 451: 822–825.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Illkowskaja, H. Kurasawa, P. Larsson & T. Wenglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Bozkurt, A. & S. Akin, 2012. First record of Eudiaptomus gracilis (G.O. Sars, 1863) (Copepoda: Diaptomida) in the inland waters of Turkey. Turkish Journal of Zoology 36: 503–511.

    Google Scholar 

  • Butcher, J. B., D. Nover, T. E. Johnson & M. C. Christopher, 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Climatic Change 129: 295–305.

    Article  CAS  Google Scholar 

  • Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.

    Article  CAS  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1996. The trophic cascade in lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Casper, S. J. (ed.), 1985. Lake Stechlin. A temperate oligotrophic lake. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Dadheech, P. K., G. B. Selmeczy, G. Vasas, J. Padisák, W. Arp, K. Tapolczai, P. Casper & L. Krienitz, 2014. Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic Lake District, Germany: an ecological, genetic and toxicological survey. Toxins 6: 2912–2931.

    Article  CAS  Google Scholar 

  • DeMott, W. R., R. D. Gulati & E. van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography 46: 2054–2060.

    Article  Google Scholar 

  • Elser, J. J. & S. R. Carpenter, 1988. Predation-driven dynamics of zooplankton and phytoplankton communities in a whole-lake experiment. Oecologia 76: 148–154.

    Article  Google Scholar 

  • Filstrup, C. T., H. Hillebrand, A. J. Heathcote, S. W. Harpole & J. A. Downing, 2014. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecology Letters 17: 464–474.

    Article  Google Scholar 

  • Floury, M., P. Usseglio-Polatera, M. Ferreol, C. Delattre & Y. Souchon, 2013. Global climate change in large European rivers: long-term effects on macroinvertebrate communities and potential local confounding factors. Global Change Biology 19: 1085–1099.

    Article  Google Scholar 

  • Gallina, N., N. Salmaso, G. Morabito & M. Beniston, 2013. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquatic Ecology 47: 177–193.

    Article  Google Scholar 

  • Ger, K. A., S. J. Teh & C. R. Goldman, 2009. Microcystin-LR toxicity on dominant copepods Eurytemora affinis and Pseudodiaptomus forbesi of the upper San Francisco Estuary. Science of The Total Environment 407: 4852–4857.

    Article  CAS  Google Scholar 

  • Ger, K. A., P. Arneson, C. R. Goldman & S. J. Teh, 2010. Species specific differences in the ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi. Journal of Plankton Research 32: 1479–1484.

    Article  CAS  Google Scholar 

  • Ger, K. A., L.-A. Hansson & M. Lürling, 2014. Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biology 59: 1783–1798.

    Article  Google Scholar 

  • Ghadouani, A., B. Pinel-Alloul & E. E. Prepas, 2003. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology 48: 363–381.

    Article  Google Scholar 

  • Gonsiorczyk, T., P. Casper & R. Koschel, 1998. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology 37: 51–58.

    Article  CAS  Google Scholar 

  • Gonsiorczyk, T., P. Casper & R. Koschel, 2001. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of the permanently oxic sediment surface. Archiv für Hydrobiologie 151: 203–219.

    Article  CAS  Google Scholar 

  • Gonsiorczyk, T., P. Casper & R. Koschel, 2003. Long-term development of the phosphorus accumulation and oxygen-consumption in the hypolimnion of oligotrophic Lake Stechlin and seasonal variations in the pore water chemistry of the profundal. Archiv für Hydrobiologie, Special Issues Advances in Limnology 58: 73–86.

    CAS  Google Scholar 

  • Gulati, R. D. & W. R. DeMott, 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology 38: 753–768.

    Article  Google Scholar 

  • Hardenbicker, P., S. Rolinski, M. Weitere & H. Fischer, 2014. Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. International Review of Hydrobiology 99: 287–299.

    Article  Google Scholar 

  • Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton–phytoplankton–nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, U.S.A.). Freshwater Biology 36: 579–597.

    Article  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hong, J., S. Talapatra, J. Katz, P. A. Tester, R. J. Wagett & A. R. Place, 2012. Algal toxins alter copepod feeding behavior. PLoS ONE 7: e36845.

    Article  CAS  Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. In Stocker, T. F., et al. (eds), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambrigde.

    Google Scholar 

  • Istvánovics, V., 2008. The role of biota in shaping the phosphorus cycle in lakes. Freshwater Reviews 1: 143–174.

    Article  Google Scholar 

  • Kasprzak, P., 1984. Bestimmung des Körperkohlenstoffs von Planktoncrustaceen. Limnologica 15: 191–194.

    Google Scholar 

  • Kasprzak, P. & D. Ronneberger, 1982. Vergleichende Untersuchungen zur Struktur und Dynamik des Zooplanktons im Stechlinsee, Nehmizsee und Haussee 1978/1979. Limnologica 14: 263–295.

    Google Scholar 

  • Kasprzak, P., C. Reese, R. Koschel, M. Schulz, I. Hambaryan & J. Mathes, 2005. Habitat characteristics of Eurytemora lacustris (Poppe, 1887) (Copepoda, Calanoida): the role of lake depth, temperature, oxygen concentration and light intensity. International Review of Hydrobiology 90: 292–309.

    Article  Google Scholar 

  • Kasprzak, P., T. Shatwell, M. O. Gessner, T. Gonsiorczyk, G. Kirillin, G. Selmeczy, J. Padisák & C. Engelhardt, 2017. Extreme weather event triggers cascade towards extreme turbidity in a clear-water lake. Ecosystems 20: 1407–1420.

    Article  Google Scholar 

  • Kirillin, G., T. Shatwell & P. Kasprzak, 2013. Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. Journal of Hydrology 496: 47–56.

    Article  Google Scholar 

  • Koschel, R., J. Benndorf, G. Proft & F. Recknagel, 1983. Calcite precipitation as a natural control mechanism of eutrophication. Archiv für Hydrobiologie 98: 380–408.

    CAS  Google Scholar 

  • Koschel, R., T. Gonsiorczyk, L. Krienitz, J. Padisák & W. Scheffler, 2002. Primary production of phytoplankton and nutrient metabolism during and after thermal pollution in a deep, oligotrophic lowland lake (Lake Stechlin, Germany). Verhandlungen des Internationalen Verein Limnologie 28: 569–575.

    Google Scholar 

  • Kurmayer, R. & F. Jüttner, 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zürich. Journal of Plankton Research 21: 659–683.

    Article  Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 483–490.

    Article  Google Scholar 

  • Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Maier, G., B. Speth, W. Arp, M. Bahnwart & P. Kasprzak, 2011. New records of the rare glacial relict Eurytemora lacustris (Poppe 1887) (Copepoda; Calanoida) in atypical lake habitats of northern Germany. Journal of Limnology 70: 145–148.

    Article  Google Scholar 

  • McLeod, A. I., 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. [available on internet https://CRAN.R-project.org/package=Kendall].

  • Mehner, T., J. Padisák, P. Kasprzak, R. Koschel & L. Krienitz, 2008. A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake. Limnologica 38: 179–188.

    Article  Google Scholar 

  • NOAA, N. O. a. A. A., 2016. Extended reconstructed sea surface temperature (ERSST.v4). National Centers for Environmental Information.

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens & H. Wagner, 2015. vegan: Community Ecology Package.

  • OPTICOUNT, 2008. [available on internet http://science.do-mix.de/software_opticount.php].

  • Pace, M. L., J. J. Cole & S. R. Carpenter, 1998. Trophic cascades and compensation: differential responses of microzooplankton in whole-lake experiments. Ecology 79: 138–152.

    Article  Google Scholar 

  • Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.

    Article  Google Scholar 

  • Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003a. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie, Special Issues Advances in Limnology 58: 101–133.

    Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, Special Issues Advances in Limnology 58: 135–155.

    Google Scholar 

  • Padisák, J., O. L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Paerl, H. W. & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.

    Article  CAS  Google Scholar 

  • Pomati, F., C. Tellenbach, B. Matthews, P. Venail, B. W. Ibelings & R. Ptacnik, 2015. Challenges and prospects for interpreting long-term phytoplankton diversity changes in Lake Zurich (Switzerland). Freshwater Biology 60: 1052–1059.

    Article  Google Scholar 

  • Ptacnik, R., A. G. Solimnini, T. Andersen, T. Tamminen, P. Brettum, L. Lepistö, E. Willén & S. Rekolainen, 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America 105: 5134–5138.

    Article  CAS  Google Scholar 

  • R Core Team, 2015. A language and environment for statistical computing. [available on internet http://www.R-project.org/].

  • Reynolds, C. S., 1989. Physical determinants of phytoplankton succiession. In Sommer, U. (ed.), Plankton ecology: succession in plankton communities. Brock-Springer Series in Contemporary Bioscience, Berlin, Heidelberg: 9–56.

    Chapter  Google Scholar 

  • Reynolds, C. S., 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Riccardi, N. & G. Rossetti, 2007. Eudiaptomus gracilis in Italy: how, where and why. Journal of Limnology 66: 64–69.

    Article  Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. Journal of Plankton Research 7: 279–294.

    Article  Google Scholar 

  • Roelke, D. L., T. Zohary, K. D. Hambright & J. V. Montoya, 2007. Alternative states in the phytoplankton of Lake Kinneret, Israel (Sea of Galilee). Freshwater Biology 52: 399–411.

    Article  CAS  Google Scholar 

  • Rose, K. A., G. L. Swartzman, A. C. Kindig & F. B. Taub, 1988. Stepwise iterative calibration of a multi-species phytoplankton–zooplankton simulation model using laboratory data. Ecological Modelling 42: 1–32.

    Article  CAS  Google Scholar 

  • Sarnelle, O. & A. E. Wilson, 2005. Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnology and Oceanography 50: 1565–1570.

    Article  Google Scholar 

  • Scilab Enterprises, 2012. Scilab: Free and Open Source software for numerical computation (OS, Version 5.XX) [Software]. [available from: http://www.scilab.org].

  • Selmeczy, G. B., 2017. Biodiversity of phytoplankton in Lake Stechlin (Germany). PhD thesis, University of Pannonia.

  • Selmeczy, G. B., L. Krienitz, P. Casper & J. Padisák, 2018. Phytoplankton response to experimental thermocline deepening: a mesocosm experiment. Hydrobiologia 805: 259–271.

    Article  CAS  Google Scholar 

  • Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Ruhland, S. Sorvari, D. Antoniades, S. J. Brooks, M. A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitoneni, N. Solovieva & J. Weckstrom, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.

    Article  CAS  Google Scholar 

  • Sommer, U., R. Adrian, L. D. S. Domis, J. J. Elser, U. Gaedke, B. W. Ibelings, E. Jeppensen, M. Lürling, J. C. Molinero, W. M. Mooij, E. Donk & M. Winder, 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Article  Google Scholar 

  • Sugihara, M. R., H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty & S. Munch, 2012. Detecting causality in complex ecosystems. Science 338: 496–500.

    Article  CAS  Google Scholar 

  • Sukenik, A., A. Quesada & N. Salmaso, 2015. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodiversity and Conservation 24: 889–908.

    Article  Google Scholar 

  • Szabó, B., J. Padisák, G. B. Selmeczy, L. Krienitz, P. Casper & C. Stenger-Kovács, 2017. Spatial and temporal patterns of benthic diatom flora in Lake Stechlin, Germany. Turkish Journal of Botany 41: 211–222.

    Article  Google Scholar 

  • Takens, F., 1980. Detecting strange attractors in turbulence. In Rand, D. A. & L.-S. Young (eds), Dynamical Systems and Turbulence. Springer Lecture Notes in Mathematics, Vol. 898. Springer, New York, Heidelberg, Berlin: 361–381.

  • Tallberg, P., J. Horppila, A. Väisänen & L. Nurminen, 1999. Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake—implications for food web management. Hydrobiologia 412: 81–94.

    Article  CAS  Google Scholar 

  • Tandonléké, R. D., J. Lazzarotto, O. Anneville & J.-C. Druart, 2009. Phytoplankton productivity increased in Lake Geneva despite phosphorus loading reduction. Journal of Plankton Research 31: 1179–1194.

    Article  Google Scholar 

  • Trumpickas, J., B. J. Shuter & C. K. Minns, 2009. Forecasting impacts of climate change on Great Lakes surface water temperatures. Journal of Great Lakes Research 35: 454–463.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der internationalen Vereinigung für theoretische und angewandte. Limnologie 9: 1–38.

    Google Scholar 

  • Üveges, V., K. Tapolczai, L. Krienitz & J. Padisák, 2012. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698: 263–272.

    Article  Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnology and Oceanography 33: 489–503.

    Article  CAS  Google Scholar 

  • Von Elert, E. & T. Wolffrom, 2001. Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnology and Oceanography 46: 1552–1558.

    Article  Google Scholar 

  • Welch, E. B., 1992. Ecological Effects of Waste Water. CRC Press, London.

    Google Scholar 

  • Wilson, A. E., O. Sarnelle & A. R. Tillmanns, 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnology and Oceanography 51: 1915–1924.

    Article  Google Scholar 

  • Winberg, G. G., K. H. Mann, J. F. Talling, H. L. Golterman & P. Blaska, 1971. Symbols, units and conversion factors in studies of freshwater productivity. International Biological Program, Productivity of Fresh Waters, IBP Office, London.

    Google Scholar 

  • Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

    Article  Google Scholar 

  • Ye, H., E. R. Deyle, L. J. Gilarranz & G. Sugihara, 2015. Distinguishing time-delayed causal interactions using convergent cross mapping. Scientific Reports 5: 14750.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michael Sachtleben, Maren Lentz, Uta Mallok, Monika Papke, Elfie Huth and Adelheid Scheffler for their field and laboratory assistance. Data processing and causality analysis were supported by the National Research Development and Innovation Office (NKFIH K120595, NKFIH-K113147, NN118902, Hungarian National Brain Research Program II., 2017-1.2.1-NKP-2017-00002). Trend analysis of environmental and biological parameters in relation to ecosystem functioning at each trophic level was supported by the National Research Development and Innovation Office (NKFIH PD 124681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géza B. Selmeczy.

Additional information

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmeczy, G.B., Abonyi, A., Krienitz, L. et al. Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis. Hydrobiologia 831, 101–117 (2019). https://doi.org/10.1007/s10750-018-3793-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3793-7

Keywords

Navigation