Skip to main content
Log in

Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Gross primary production and ecosystem respiration together define ecosystem metabolism and help indicate the importance of internal and external carbon sources. Spatial variability of these processes is poorly characterized in rivers. We measured metabolism in the Kansas River: (1) at 10 locations over 100 s of km in tributaries within the watershed and (2) over 20 km with detailed sampling in the main stem. Whole-river metabolism at the larger scale was decoupled from light, algal growth, and nutrient limitation, and was positively related to nutrients. Smaller-scale main stem sampling revealed almost as much variance over a few kilometers as the larger scale sampling. Local processes seemed to dominate dissolved oxygen dynamics, since diurnal dissolved oxygen patterns were better correlated with absolute time than data corrected for travel times. A single-station method compared against two-station metabolism methods indicated that local hotspots of metabolism occur at scales less than 1 km and that single-station estimates average out this variance. The main stem data provide support to the idea that functional processing zones control characteristics used to estimate system metabolism, but the nutrient effect at the whole watershed level indicates that transport from upstream can also be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.

    Article  Google Scholar 

  • Ameel, J. J., R. P. Axler & C. J. Owen, 1993. Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient waters. American Environmental Laboratory 10: 7–11.

    Google Scholar 

  • Berg, P., D. J. Koopmans, M. Huettel, H. Li, K. Mori & A. Wüest, 2016. A new robust oxygen-temperature sensor for aquatic eddy covariance measurements. Limnology and Oceanography: Methods 14: 151–167.

    Article  CAS  Google Scholar 

  • Bernot, M. J., D. J. Sobota, R. O. Hall, P. J. Mulholland, W. K. Dodds, J. R. Webster, J. L. Tank, L. R. Ashkenas, L. W. Cooper & C. N. Dahm, 2010. Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology 55: 1874–1890.

    Article  Google Scholar 

  • Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Peterson, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Article  Google Scholar 

  • Brett, M. T., S. E. Bunn, S. Chandra, A. W. E. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. P. Lau, T. P. Moulton, M. E. Power, J. B. Rasmussen, S. J. Taipale, J. H. Thorp & J. D. Wehr, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.

    Article  CAS  Google Scholar 

  • Buchanan, T. J. & W. P. Somers, 1969. Discharge Measurements at Gaging Stations. US Government Printing Office, Washington.

    Google Scholar 

  • Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680.

    Article  Google Scholar 

  • Chapra, S. C. & D. M. Di Toro, 1991. Delta method for estimating primary production, respiration, and reaeration in streams. Journal of Environmental Engineering 117: 640–655.

    Article  CAS  Google Scholar 

  • Demars, B. O. L., J. R. Manson, J. S. Olafsson, G. M. Gislason, R. Gudmundsdottir, G. Woodward, J. Reiss, D. E. Pichler, J. J. Rasmussen & N. Friberg, 2011. Temperature and the metabolic balance of streams. Freshwater Biology 56: 1106–1121.

    Article  Google Scholar 

  • Demars, B. O. L., J. Thompson & J. R. Manson, 2015. Stream metabolism and the open diel oxygen method: principles, practice, and perspectives. Limnology and Oceanography: Methods 13: 356–374.

    Article  CAS  Google Scholar 

  • Demars, B. O., G. M. Gíslason, J. S. Ólafsson, J. R. Manson, N. Friberg, J. M. Hood, J. J. Thompson & T. E. Freitag, 2016. Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience 9: 758–761.

    Article  CAS  Google Scholar 

  • Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.

    Article  CAS  Google Scholar 

  • Dodds, W. K. & M. R. Whiles, 2010. Freshwater Ecology: concepts and Environmental Applications of Limnology, 2nd ed. Academic Press, Burlington.

    Google Scholar 

  • Dodds, W. K., J. J. Beaulieu, J. J. Eichmiller, J. R. Fischer, N. R. Franssen, D. A. Gudder & R. W. Sheibley, 2008. Journal of Geophysical Research-Biogeosciences 113: G4.

    Article  Google Scholar 

  • Dodds, W. K., A. M. Veach, C. M. Ruffing, D. M. Larson, J. L. Fischer & K. H. Costigan, 2013. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshwater Science 32: 1073–1087.

    Article  Google Scholar 

  • Eaton, A. D. & M. A. H. Franson, 2005. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, Washington.

    Google Scholar 

  • Findlay, S. G., R. L. Sinsabaugh, W. V. Sobczak & M. Hoostal, 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48: 1608–1617.

    Article  CAS  Google Scholar 

  • Fuß, T., B. Behounek, A. J. Ulseth & G. A. Singer, 2017. Land use controls stream ecosystem metabolism by shifting dissolved organic matter and nutrient regimes. Freshwater Biology 62: 582–599.

    Article  Google Scholar 

  • Gore, J. A., 2006. Discharge measurements and stream-flow analysis. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 5–74.

    Google Scholar 

  • Grace, M. R., D. P. Giling, S. Hladyz, V. Caron, R. M. Thompson & R. Mac Nally, 2015. Fast processing of diel oxygen curves: estimating stream metabolism with BASE (BAyesian Single-station Estimation). Limnology and Oceanography: Methods 13: 103–114.

    CAS  Google Scholar 

  • Hall, R. O. J. & J. L. Tank, 2005. Correcting whole-stream estimates of metabolism for groundwater input. Limnology and Oceanography: Methods 3: 222–229.

    Article  CAS  Google Scholar 

  • Hall, R. O., C. B. Yackulic, T. A. Kennedy, M. D. Yard, E. J. Rosi-Marshall, N. Voichick & K. E. Behn, 2015. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology and Oceanography 60: 512–526.

    Article  Google Scholar 

  • Hall, R. O., J. L. Tank, M. A. Baker, E. J. Rosi-Marshall & E. R. Hotchkiss, 2016. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19: 73–86.

    Article  CAS  Google Scholar 

  • Holtgrieve, G. W., D. E. Schindler, T. A. Branch & Z. T. A’mar, 2010. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnology and Oceanography 55: 1047–1062.

    Article  CAS  Google Scholar 

  • Hondzo, M., V. R. Voller, M. Morris, E. Foufoula-Georgiou, J. Finlay, V. Ganti & M. E. Power, 2013. Estimating and scaling stream ecosystem metabolism along channels with heterogeneous substrate. Ecohydrology 6: 679–688.

    Article  Google Scholar 

  • Hotchkiss, E. R., R. O. Hall, R. A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. Rosvall & J. Karlsson, 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience 8: 696–699.

    Article  CAS  Google Scholar 

  • Houser, J. N., L. A. Bartsch, W. B. Richardson, J. T. Rogala & J. F. Sullivan, 2015. Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the Upper Mississippi River. Freshwater Biology 60: 1863–1879.

    Article  CAS  Google Scholar 

  • Hunt, R. J., T. D. Jardine, S. K. Hamilton & S. E. Bunn, 2012. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology 57: 435–450.

    Article  CAS  Google Scholar 

  • Huryn, A. D., J. P. Benstead & S. M. Parker, 2014. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95: 2826–2839.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Karr, J. R. & D. R. Dudley, 1981. Ecological perspective on water quality goals. Environmental Management 5: 55–68.

    Article  Google Scholar 

  • Kupilas, B., D. Hering, A. W. Lorenz, C. Knuth & B. Gücker, 2017. Hydromorphological restoration stimulates river ecosystem metabolism. Biogeosciences 14: 1989–2002.

    Article  Google Scholar 

  • Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.

    Article  PubMed  Google Scholar 

  • McCutchan, J. H., W. M. Lewis & J. F. Saunders, 1998. Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. Journal of the North American Benthological Society 17: 155–165.

    Article  Google Scholar 

  • McCutchan Jr., J. H., J. F. Saunders III, W. M. Lewis Jr. & M. G. Hayden, 2002. Effects of groundwater flux on open-channel estimates of stream metabolism. Limnology and Oceanography 47: 321–324.

    Article  Google Scholar 

  • Metcalf, A. L., 1966. Fishes of the Kansas River system in relation to zoogeography of the Great Plains. University of Kansas Publications, Museum of Natural History 17: 23–189.

    Google Scholar 

  • Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Marti, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. McDowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.

    Article  CAS  Google Scholar 

  • Ochs, C. A., O. Pongruktham & P. V. Zimba, 2013. Darkness at the break of noon: phytoplankton production in the lower Mississippi River. Limnology and Oceanography 58: 555–568.

    Article  CAS  Google Scholar 

  • Oviatt, C. A., D. T. Rudnick, A. A. Keller, P. A. Sampou & G. T. Almquist, 1986. A comparison of system (O2 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Marine Ecology Progress Series 28: 57–67.

    Article  CAS  Google Scholar 

  • Quist, M. C., J. S. Tillma, M. N. Burlingame & C. S. Guy, 1999. Overwinter habitat use of shovelnose sturgeon in the Kansas River. Transactions of the American Fisheries Society 128: 522–527.

    Article  Google Scholar 

  • Reichert, P., U. Uehlinger & V. Acuña, 2009. Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2008JG000917.

    Google Scholar 

  • Richards, R. P., D. B. Baker, J. P. Crumrine, J. W. Kramer, D. E. Ewing & B. J. Merryfield, 2008. Thirty year trends in suspended sediment in seven Lake Erie tributaries. Journal of Environmental Quality 37: 1894–1908.

    Article  CAS  PubMed  Google Scholar 

  • Riley, A. J. & W. K. Dodds, 2012. The expansion of woody riparian vegetation, and subsequent stream restoration, influences the metabolism of prairie streams. Freshwater Biology 57: 1138–1150.

    Article  Google Scholar 

  • Riley, A. J. & W. K. Dodds, 2013. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshwater Science 32: 56–69.

    Article  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Schade, J. D., K. MacNeill, S. A. Thomas, F. Camille McNeely, J. R. Welter, J. Hood, M. Goodrich, M. E. Power & J. C. Finlay, 2011. The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams. Freshwater Biology 56: 424–436.

    Article  CAS  Google Scholar 

  • Siders, A. C., D. M. Larson, J. Rüegg & W. K. Dodds, 2017. Probing whole stream metabolism: influence of spatial heterogeneity on rate estimates. Freshwater Biology 62: 711–723.

    Article  Google Scholar 

  • Song, C., W. K. Dodds, M. T. Trentman, J. Rüegg & F. Ballantyne, 2016. Methods of approximation influence aquatic ecosystem metabolism estimates. Limnology and Oceanography: Methods 14: 557–569.

    Article  Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • Tank, J. L., M. J. Bernot & E. J. Rosi-Marshall, 2006. Nitrogen limitation and uptake. In Lauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, New York: 213–238.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model – a heuristic view of carbon-sources and organic-processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Tromboni, F., W. K. Dodds, V. Neres-Lima, E. Zandronà & T. P. Moulton, 2017. Heterogeneity and scaling of photosynthesis, respiration, and nitrogen uptake in three Atlantic Rainforest Streams. Ecosphere 8: 9.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Ward, J. & J. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10: 159–168.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Wiegner, T. N., L. A. Kaplan, J. D. Newbold & P. H. Ostrom, 2005. Contribution of dissolved organic C to stream metabolism: a mesocosm study using 13C-enriched tree-tissue leachate. Journal of the North American Benthological Society 24: 48–67.

    Article  Google Scholar 

  • Williams, R. J., C. White, M. L. Harrow & C. Neal, 2000. Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Science of the Total Environment 251: 497–510.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Demars and an anonymous reviewer for numerous improvements to the manuscript. We thank National Science Foundation Macrosystems 1258994 and 1442544 for funding. Robert Mapes and Richard Lehrter provided assistance and Martha Mather and the Kansas Cooperative Fisheries and Wildlife program graciously provided some field equipment. This is publication 18-281-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter K. Dodds.

Additional information

Handling editor: John M. Melack

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodds, W.K., Higgs, S.A., Spangler, M.J. et al. Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network. Hydrobiologia 813, 85–102 (2018). https://doi.org/10.1007/s10750-018-3516-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3516-0

Keywords

Navigation